These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26736307)

  • 21. Mechanomyography versus electromyography, in monitoring the muscular fatigue.
    Tarata MT
    Biomed Eng Online; 2003 Feb; 2():3. PubMed ID: 12625837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repeatability of surface EMG parameters at various isometric contraction levels and during fatigue using bipolar and Laplacian electrode configurations.
    Ollivier K; Portero P; Maïsetti O; Hogrel JY
    J Electromyogr Kinesiol; 2005 Oct; 15(5):466-73. PubMed ID: 15935958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of Muscle Fatigue Progression using Cyclostationary Property of Surface Electromyography Signals.
    Karthick PA; Venugopal G; Ramakrishnan S
    J Med Syst; 2016 Jan; 40(1):28. PubMed ID: 26547848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle fatigue monitoring using wavelet decomposition of surface EMG.
    Xiao S; Leung SC
    Biomed Sci Instrum; 1997; 34():147-52. PubMed ID: 9603029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variability of Time- and Frequency-Domain Surface Electromyographic Measures in Non-Fatigued Shoulder Muscles.
    Alasim HN; Nimbarte AD
    IISE Trans Occup Ergon Hum Factors; 2022; 10(4):201-212. PubMed ID: 36411999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantify work load and muscle functional activation patterns in neck-shoulder muscles of female sewing machine operators using surface electromyogram.
    Zhang FR; He LH; Wu SS; Li JY; Ye KP; Wang S
    Chin Med J (Engl); 2011 Nov; 124(22):3731-7. PubMed ID: 22340233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linear vs. non-linear mapping of peak power using surface EMG features during dynamic fatiguing contractions.
    Gonzalez-Izal M; Malanda A; Rodríguez-Carreño I; Navarro-Amézqueta I; Gorostiaga EM; Farina D; Falla D; Izquierdo M
    J Biomech; 2010 Sep; 43(13):2589-94. PubMed ID: 20553798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiscale feature based analysis of surface EMG signals under fatigue and non-fatigue conditions.
    Navaneethakrishna M; Ramakrishnan S;
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4627-30. PubMed ID: 25571023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-invasive detection of low-level muscle fatigue using surface EMG with wavelet decomposition.
    Zhang G; Morin E; Zhang Y; Etemad SA
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5648-5651. PubMed ID: 30441617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic contraction and fatigue analysis in biceps brachii muscles using synchrosqueezed wavelet transform and singular value features.
    Hari LM; Venugopal G; Ramakrishnan S
    Proc Inst Mech Eng H; 2022 Feb; 236(2):208-217. PubMed ID: 34633247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behaviour of a surface EMG based measure for motor control: motor unit action potential rate in relation to force and muscle fatigue.
    Kallenberg LA; Hermens HJ
    J Electromyogr Kinesiol; 2008 Oct; 18(5):780-8. PubMed ID: 17466536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. sEMG wavelet-based indices predicts muscle power loss during dynamic contractions.
    González-Izal M; Rodríguez-Carreño I; Malanda A; Mallor-Giménez F; Navarro-Amézqueta I; Gorostiaga EM; Izquierdo M
    J Electromyogr Kinesiol; 2010 Dec; 20(6):1097-106. PubMed ID: 20579906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of the wavelet spectral estimation technique in biceps brachii and brachioradialis fatigue assessment during prolonged low-level static and dynamic contractions.
    Hostens I; Seghers J; Spaepen A; Ramon H
    J Electromyogr Kinesiol; 2004 Apr; 14(2):205-15. PubMed ID: 14962773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Muscle fatigue during dynamic contractions assessed by new spectral indices.
    Dimitrov GV; Arabadzhiev TI; Mileva KN; Bowtell JL; Crichton N; Dimitrova NA
    Med Sci Sports Exerc; 2006 Nov; 38(11):1971-9. PubMed ID: 17095932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [sEMG signal change characteristics during the short period of recovery after muscular fatigue with isometric contractions].
    Ye W; Wang J
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2005 May; 21(2):216-9. PubMed ID: 21171347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of ECG Artifacts Affects Respiratory Muscle Fatigue Detection-A Simulation Study.
    Kahl L; Hofmann UG
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The sEMG-force relationship during ramp contractions of biceps brachii in non-fatigue exercises].
    Song C; Wang J; Lou LP
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2010 Feb; 26(1):97-101. PubMed ID: 20476578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Real-Time Algorithm to Estimate Shoulder Muscle Fatigue Based on Surface EMG Signal For Static and Dynamic Upper Limb Tasks.
    Boyer M; Bouyer L; Roy JS; Campeau-Lecours A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():100-106. PubMed ID: 34891249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of muscle fatigue using sonomyography: muscle thickness change detected from ultrasound images.
    Shi J; Zheng YP; Chen X; Huang QH
    Med Eng Phys; 2007 May; 29(4):472-9. PubMed ID: 16908212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy.
    Murillo-Escobar J; Jaramillo-Munera YE; Orrego-Metaute DA; Delgado-Trejos E; Cuesta-Frau D
    Math Biosci Eng; 2020 Mar; 17(3):2592-2615. PubMed ID: 32233556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.