These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26736334)

  • 1. A brain computer interface for robust wheelchair control application based on pseudorandom code modulated Visual Evoked Potential.
    Mohebbi A; Engelsholm SK; Puthusserypady S; Kjaer TW; Thomsen CE; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():602-5. PubMed ID: 26736334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of pseudorandom sequences used in a c-VEP based BCI for online wheelchair control.
    Isaksen J; Mohebbi A; Puthusserypady S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1512-1515. PubMed ID: 28324945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 120-target brain-computer interface based on code-modulated visual evoked potentials.
    Sun Q; Zheng L; Pei W; Gao X; Wang Y
    J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface.
    Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M
    Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fast Brain Switch Based on Multi-Class Code-Modulated VEPs
    Zheng L; Wang Y; Pei W; Chen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3058-3061. PubMed ID: 31946533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-Computer Interface Based on Steady-State Visual Evoked Potential Using Quick-Response Code Pattern for Wheelchair Control.
    Siribunyaphat N; Punsawad Y
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid SSVEP-motion visual stimulus based BCI system for intelligent wheelchair.
    Punsawad Y; Wongsawat Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7416-9. PubMed ID: 24111459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation and application of a hybrid brain computer interface for real wheelchair parallel control with multi-degree of freedom.
    Li J; Ji H; Cao L; Zang D; Gu R; Xia B; Wu Q
    Int J Neural Syst; 2014 Jun; 24(4):1450014. PubMed ID: 24694169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control.
    Cao L; Li J; Ji H; Jiang C
    J Neurosci Methods; 2014 May; 229():33-43. PubMed ID: 24713576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of an eye gaze point detection method using VEP elicited by multi-pseudorandom stimulation for brain computer interface.
    Momose K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5063-6. PubMed ID: 18003144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.
    Spuler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1087-90. PubMed ID: 26736454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials.
    Wei Q; Feng S; Lu Z
    PLoS One; 2016; 11(5):e0156416. PubMed ID: 27243454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.
    Tu Y; Hung YS; Hu L; Huang G; Hu Y; Zhang Z
    Clin Neurophysiol; 2014 Dec; 125(12):2372-83. PubMed ID: 24794514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.
    Long J; Li Y; Wang H; Yu T; Pan J; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance.
    Wei Q; Huang Y; Li M; Lu Z
    Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal pseudorandom sequence selection for online c-VEP based BCI control applications.
    Isaksen JL; Mohebbi A; Puthusserypady S
    PLoS One; 2017; 12(9):e0184785. PubMed ID: 28902895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady state visual evoked potential based brain-computer interface for cognitive assessment.
    Westergren N; Bendtsen RL; Kjaer TW; Thomsen CE; Puthusserypady S; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1508-1511. PubMed ID: 28268613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-performance brain switch based on code-modulated visual evoked potentials.
    Zheng L; Pei W; Gao X; Zhang L; Wang Y
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996051
    [No Abstract]   [Full Text] [Related]  

  • 19. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface.
    Wilaiprasitporn T; Yagi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2327-30. PubMed ID: 26736759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
    Spüler M; Rosenstiel W; Bogdan M
    PLoS One; 2012; 7(12):e51077. PubMed ID: 23236433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.