BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26736334)

  • 1. A brain computer interface for robust wheelchair control application based on pseudorandom code modulated Visual Evoked Potential.
    Mohebbi A; Engelsholm SK; Puthusserypady S; Kjaer TW; Thomsen CE; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():602-5. PubMed ID: 26736334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of pseudorandom sequences used in a c-VEP based BCI for online wheelchair control.
    Isaksen J; Mohebbi A; Puthusserypady S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1512-1515. PubMed ID: 28324945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 120-target brain-computer interface based on code-modulated visual evoked potentials.
    Sun Q; Zheng L; Pei W; Gao X; Wang Y
    J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface.
    Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M
    Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fast Brain Switch Based on Multi-Class Code-Modulated VEPs
    Zheng L; Wang Y; Pei W; Chen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3058-3061. PubMed ID: 31946533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-Computer Interface Based on Steady-State Visual Evoked Potential Using Quick-Response Code Pattern for Wheelchair Control.
    Siribunyaphat N; Punsawad Y
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid SSVEP-motion visual stimulus based BCI system for intelligent wheelchair.
    Punsawad Y; Wongsawat Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7416-9. PubMed ID: 24111459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation and application of a hybrid brain computer interface for real wheelchair parallel control with multi-degree of freedom.
    Li J; Ji H; Cao L; Zang D; Gu R; Xia B; Wu Q
    Int J Neural Syst; 2014 Jun; 24(4):1450014. PubMed ID: 24694169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control.
    Cao L; Li J; Ji H; Jiang C
    J Neurosci Methods; 2014 May; 229():33-43. PubMed ID: 24713576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of an eye gaze point detection method using VEP elicited by multi-pseudorandom stimulation for brain computer interface.
    Momose K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5063-6. PubMed ID: 18003144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.
    Spuler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1087-90. PubMed ID: 26736454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials.
    Wei Q; Feng S; Lu Z
    PLoS One; 2016; 11(5):e0156416. PubMed ID: 27243454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.
    Tu Y; Hung YS; Hu L; Huang G; Hu Y; Zhang Z
    Clin Neurophysiol; 2014 Dec; 125(12):2372-83. PubMed ID: 24794514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.
    Long J; Li Y; Wang H; Yu T; Pan J; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance.
    Wei Q; Huang Y; Li M; Lu Z
    Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal pseudorandom sequence selection for online c-VEP based BCI control applications.
    Isaksen JL; Mohebbi A; Puthusserypady S
    PLoS One; 2017; 12(9):e0184785. PubMed ID: 28902895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady state visual evoked potential based brain-computer interface for cognitive assessment.
    Westergren N; Bendtsen RL; Kjaer TW; Thomsen CE; Puthusserypady S; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1508-1511. PubMed ID: 28268613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-performance brain switch based on code-modulated visual evoked potentials.
    Zheng L; Pei W; Gao X; Zhang L; Wang Y
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996051
    [No Abstract]   [Full Text] [Related]  

  • 19. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface.
    Wilaiprasitporn T; Yagi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2327-30. PubMed ID: 26736759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
    Spüler M; Rosenstiel W; Bogdan M
    PLoS One; 2012; 7(12):e51077. PubMed ID: 23236433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.