These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26736334)

  • 21. Augmented Reality Driven Steady-State Visual Evoked Potentials for Wheelchair Navigation.
    Sakkalis V; Krana M; Farmaki C; Bourazanis C; Gaitatzis D; Pediaditis M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2960-2969. PubMed ID: 36269910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous detection method of P300 event-related potentials and eye gaze point using multi-pseudorandom and flash stimulation for brain computer interface.
    Momose K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():666-9. PubMed ID: 19162743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A high-speed BCI based on code modulation VEP.
    Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S
    J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Indoor simulation training system for brain-controlled wheelchair based on steady-state visual evoked potentials].
    Wang J; Wang K; Chen X; Wang H; Xu S; Liu M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Jun; 37(3):502-511. PubMed ID: 32597093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Bayesian Shared Control Approach for Wheelchair Robot With Brain Machine Interface.
    Deng X; Yu ZL; Lin C; Gu Z; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):328-338. PubMed ID: 31825869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations.
    Al-Qaysi ZT; Zaidan BB; Zaidan AA; Suzani MS
    Comput Methods Programs Biomed; 2018 Oct; 164():221-237. PubMed ID: 29958722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of a simulated wheelchair based on a hybrid brain computer interface.
    Long J; Li Y; Wang H; Yu T; Pan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6727-30. PubMed ID: 23367473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of stimuli colour in SSVEP-based BCI wheelchair control using support vector machines.
    Singla R; Khosla A; Jha R
    J Med Eng Technol; 2014 Apr; 38(3):125-34. PubMed ID: 24533888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control.
    Li Y; Pan J; Wang F; Yu Z
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3156-66. PubMed ID: 23799679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A brain computer interface based on motion-onset VEPs.
    Guo F; Hong B; Gao X; Gao S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4478-81. PubMed ID: 19163710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of steady-state visual and somatosensory evoked potentials for brain-computer interface control.
    Smith DJ; Varghese LA; Stepp CE; Guenther FH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1234-7. PubMed ID: 25570188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimulus Design for Visual Evoked Potential Based Brain-Computer Interfaces.
    Xu H; Hsu SH; Nakanishi M; Lin Y; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2545-2551. PubMed ID: 37262122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes.
    Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the Potential of Brain-Computer Interface Multiplayer Video Games using c-VEPs: A Pilot Study.
    Moreno-Calderon S; Martinez-Cagigal V; Santamaria-Vazquez E; Perez-Velasco S; Marcos-Martinez D; Hornero R
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces.
    Waytowich NR; Krusienski DJ
    J Neural Eng; 2015 Jun; 12(3):036006. PubMed ID: 25875047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of assistive wheelchair system directly steered by human thoughts.
    Li J; Liang J; Zhao Q; Li J; Hong K; Zhang L
    Int J Neural Syst; 2013 Jun; 23(3):1350013. PubMed ID: 23627660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multi-target brain-computer interface based on code modulated visual evoked potentials.
    Liu Y; Wei Q; Lu Z
    PLoS One; 2018; 13(8):e0202478. PubMed ID: 30118504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploiting the temporal patterning of transient VEP signals: a statistical single-trial methodology with implications to brain-computer interfaces (BCIs).
    Liparas D; Dimitriadis SI; Laskaris NA; Tzelepi A; Charalambous K; Angelis L
    J Neurosci Methods; 2014 Jul; 232():189-98. PubMed ID: 24880045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Brain-Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli.
    Xu M; Xiao X; Wang Y; Qi H; Jung TP; Ming D
    IEEE Trans Biomed Eng; 2018 May; 65(5):1166-1175. PubMed ID: 29683431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.