These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 26736454)

  • 1. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.
    Spuler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1087-90. PubMed ID: 26736454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-speed brain-computer interface (BCI) using dry EEG electrodes.
    Spüler M
    PLoS One; 2017; 12(2):e0172400. PubMed ID: 28225794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asynchronous non-invasive high-speed BCI speller with robust non-control state detection.
    Nagel S; Spüler M
    Sci Rep; 2019 Jun; 9(1):8269. PubMed ID: 31164679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
    Spüler M; Rosenstiel W; Bogdan M
    PLoS One; 2012; 7(12):e51077. PubMed ID: 23236433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brain computer interface-based explorer.
    Bai L; Yu T; Li Y
    J Neurosci Methods; 2015 Apr; 244():2-7. PubMed ID: 24975290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective 2-D cursor control system using hybrid SSVEP + P300 visual brain computer interface.
    Kapgate D
    Med Biol Eng Comput; 2022 Nov; 60(11):3243-3254. PubMed ID: 36151487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Different Visual Feedback Methods for Brain-Computer Interfaces (BCI) Based on Code-Modulated Visual Evoked Potentials (cVEP).
    Fodor MA; Herschel H; Cantürk A; Heisenberg G; Volosyak I
    Brain Sci; 2024 Aug; 14(8):. PubMed ID: 39199537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.
    Tu Y; Hung YS; Hu L; Huang G; Hu Y; Zhang Z
    Clin Neurophysiol; 2014 Dec; 125(12):2372-83. PubMed ID: 24794514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface.
    Thielen J; Marsman P; Farquhar J; Desain P
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33690182
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of monitor raster latency on VEPs, ERPs and Brain-Computer Interface performance.
    Nagel S; Dreher W; Rosenstiel W; Spüler M
    J Neurosci Methods; 2018 Feb; 295():45-50. PubMed ID: 29197616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DTU BCI speller: an SSVEP-based spelling system with dictionary support.
    Vilic A; Kjaer TW; Thomsen CE; Puthusserypady S; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2212-5. PubMed ID: 24110162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A brain-computer interface controlled mail client.
    Yu T; Li Y; Long J; Wang C
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2164-7. PubMed ID: 24110150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A brain computer interface for robust wheelchair control application based on pseudorandom code modulated Visual Evoked Potential.
    Mohebbi A; Engelsholm SK; Puthusserypady S; Kjaer TW; Thomsen CE; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():602-5. PubMed ID: 26736334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of a nursing bed based on a hybrid brain-computer interface.
    Nengneng Peng ; Rui Zhang ; Haihua Zeng ; Fei Wang ; Kai Li ; Yuanqing Li ; Xiaobin Zhuang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1556-1559. PubMed ID: 28268624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimising non-invasive brain-computer interface systems for free communication between naïve human participants.
    Renton AI; Mattingley JB; Painter DR
    Sci Rep; 2019 Dec; 9(1):18705. PubMed ID: 31822715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 120-target brain-computer interface based on code-modulated visual evoked potentials.
    Sun Q; Zheng L; Pei W; Gao X; Wang Y
    J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid BCI system for 2-D asynchronous cursor control.
    Li Y; Long J; Yu T; Yu Z; Wang C; Zhang H; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4205-8. PubMed ID: 21096894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.