These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 26736454)
21. Application of BCI systems in neurorehabilitation: a scoping review. Bamdad M; Zarshenas H; Auais MA Disabil Rehabil Assist Technol; 2015; 10(5):355-64. PubMed ID: 25560222 [TBL] [Abstract][Full Text] [Related]
22. Improving BCI performance through co-adaptation: applications to the P300-speller. Mattout J; Perrin M; Bertrand O; Maby E Ann Phys Rehabil Med; 2015 Feb; 58(1):23-28. PubMed ID: 25623293 [TBL] [Abstract][Full Text] [Related]
23. A visual brain-computer interface as communication aid for patients with amyotrophic lateral sclerosis. Verbaarschot C; Tump D; Lutu A; Borhanazad M; Thielen J; van den Broek P; Farquhar J; Weikamp J; Raaphorst J; Groothuis JT; Desain P Clin Neurophysiol; 2021 Oct; 132(10):2404-2415. PubMed ID: 34454267 [TBL] [Abstract][Full Text] [Related]
24. A comparison between a matrix-based and a region-based P300 speller paradigms for brain-computer interface. Fazel-Rezai R; Abhari K Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1147-50. PubMed ID: 19162867 [TBL] [Abstract][Full Text] [Related]
25. UMA-BCI Speller: An easily configurable P300 speller tool for end users. Velasco-Álvarez F; Sancha-Ros S; García-Garaluz E; Fernández-Rodríguez Á; Medina-Juliá MT; Ron-Angevin R Comput Methods Programs Biomed; 2019 Apr; 172():127-138. PubMed ID: 30902124 [TBL] [Abstract][Full Text] [Related]
26. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game. Leite HMA; de Carvalho SN; Costa TBDS; Attux R; Hornung HH; Arantes DS Comput Intell Neurosci; 2018; 2018():4920132. PubMed ID: 29849549 [TBL] [Abstract][Full Text] [Related]
27. Projected accuracy metric for the P300 Speller. Colwell K; Throckmorton C; Collins L; Morton K IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):921-5. PubMed ID: 25203496 [TBL] [Abstract][Full Text] [Related]
28. sBCI: fast detection of steady-state visual evoked potentials. Valbuena D; Volosyak I; Graser A Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3966-9. PubMed ID: 21097270 [TBL] [Abstract][Full Text] [Related]
29. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. Trejo LJ; Rosipal R; Matthews B IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300 [TBL] [Abstract][Full Text] [Related]
30. Plug&Play Brain-Computer Interfaces for effective Active and Assisted Living control. Mora N; De Munari I; Ciampolini P; Del R Millán J Med Biol Eng Comput; 2017 Aug; 55(8):1339-1352. PubMed ID: 27858227 [TBL] [Abstract][Full Text] [Related]
31. An artificial intelligence that increases simulated brain-computer interface performance. Olsen S; Zhang J; Liang KF; Lam M; Riaz U; Kao JC J Neural Eng; 2021 May; 18(4):. PubMed ID: 33978599 [No Abstract] [Full Text] [Related]
32. An FPGA-Embedded Brain-Computer Interface System to Support Individual Autonomy in Locked-In Individuals. Palumbo A; Ielpo N; Calabrese B Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009860 [TBL] [Abstract][Full Text] [Related]
33. An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier. Akram F; Han SM; Kim TS Comput Biol Med; 2015 Jan; 56():30-6. PubMed ID: 25464346 [TBL] [Abstract][Full Text] [Related]
34. Spelling with non-invasive Brain-Computer Interfaces--current and future trends. Cecotti H J Physiol Paris; 2011; 105(1-3):106-14. PubMed ID: 21911058 [TBL] [Abstract][Full Text] [Related]
35. An eighty-target high-speed Chinese BCI speller. Chengcheng Han ; Guanghua Xu ; Jun Xie ; Min Li ; Sicong Zhang ; Ailing Luo Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1652-1655. PubMed ID: 29060201 [TBL] [Abstract][Full Text] [Related]
36. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential. Brumberg JS; Nguyen A; Pitt KM; Lorenz SD Disabil Rehabil Assist Technol; 2019 Apr; 14(3):241-249. PubMed ID: 29385839 [TBL] [Abstract][Full Text] [Related]
37. A region-based two-step P300-based brain-computer interface for patients with amyotrophic lateral sclerosis. Ikegami S; Takano K; Kondo K; Saeki N; Kansaku K Clin Neurophysiol; 2014 Nov; 125(11):2305-2312. PubMed ID: 24731767 [TBL] [Abstract][Full Text] [Related]
38. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI. Chang MH; Lee JS; Heo J; Park KS J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770 [TBL] [Abstract][Full Text] [Related]
39. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance. Wei Q; Huang Y; Li M; Lu Z Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316 [TBL] [Abstract][Full Text] [Related]
40. Importance of Graphical User Interface in the design of P300 based Brain-Computer Interface systems. Ratcliffe L; Puthusserypady S Comput Biol Med; 2020 Feb; 117():103599. PubMed ID: 32072963 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]