These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 26736454)

  • 41. A visual parallel-BCI speller based on the time-frequency coding strategy.
    Xu M; Chen L; Zhang L; Qi H; Ma L; Tang J; Wan B; Ming D
    J Neural Eng; 2014 Apr; 11(2):026014. PubMed ID: 24608672
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Convolutional neural networks for P300 detection with application to brain-computer interfaces.
    Cecotti H; Gräser A
    IEEE Trans Pattern Anal Mach Intell; 2011 Mar; 33(3):433-45. PubMed ID: 20567055
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neural decoding of code modulated visual evoked potentials by spatio-temporal inverse filtering for brain computer interfaces.
    Sato JI; Washizawa Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1484-1487. PubMed ID: 28268607
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Fast Brain Switch Based on Multi-Class Code-Modulated VEPs
    Zheng L; Wang Y; Pei W; Chen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3058-3061. PubMed ID: 31946533
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Write, read and answer emails with a dry 'n' wireless brain-computer interface system.
    Pinegger A; Deckert L; Halder S; Barry N; Faller J; Käthner I; Hintermüller C; Wriessnegger SC; Kübler A; Müller-Putz GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1286-9. PubMed ID: 25570201
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Brain-Computer Interface (BCI) Control of a Virtual Assistant in a Smartphone to Manage Messaging Applications.
    Velasco-Álvarez F; Fernández-Rodríguez Á; Vizcaíno-Martín FJ; Díaz-Estrella A; Ron-Angevin R
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073602
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Asynchronous c-VEP communication tools-efficiency comparison of low-target, multi-target and dictionary-assisted BCI spellers.
    Gembler FW; Benda M; Rezeika A; Stawicki PR; Volosyak I
    Sci Rep; 2020 Oct; 10(1):17064. PubMed ID: 33051500
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis.
    Guy V; Soriani MH; Bruno M; Papadopoulo T; Desnuelle C; Clerc M
    Ann Phys Rehabil Med; 2018 Jan; 61(1):5-11. PubMed ID: 29024794
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
    Perdikis S; Leeb R; Williamson J; Ramsay A; Tavella M; Desideri L; Hoogerwerf EJ; Al-Khodairy A; Murray-Smith R; Millán JD
    J Neural Eng; 2014 Jun; 11(3):036003. PubMed ID: 24737114
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A P300-based brain computer interface system for words typing.
    Akram F; Han HS; Kim TS
    Comput Biol Med; 2014 Feb; 45():118-25. PubMed ID: 24480171
    [TBL] [Abstract][Full Text] [Related]  

  • 53. P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier.
    De Vos M; Kroesen M; Emkes R; Debener S
    J Neural Eng; 2014 Jun; 11(3):036008. PubMed ID: 24763067
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Brain-computer interfaces based on code-modulated visual evoked potentials (c-VEP): a literature review.
    Martínez-Cagigal V; Thielen J; Santamaría-Vázquez E; Pérez-Velasco S; Desain P; Hornero R
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34763331
    [No Abstract]   [Full Text] [Related]  

  • 55. Fast attainment of computer cursor control with noninvasively acquired brain signals.
    Bradberry TJ; Gentili RJ; Contreras-Vidal JL
    J Neural Eng; 2011 Jun; 8(3):036010. PubMed ID: 21493978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A comprehensive review of EEG-based brain-computer interface paradigms.
    Abiri R; Borhani S; Sellers EW; Jiang Y; Zhao X
    J Neural Eng; 2019 Feb; 16(1):011001. PubMed ID: 30523919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A hybrid brain-computer interface-based mail client.
    Yu T; Li Y; Long J; Li F
    Comput Math Methods Med; 2013; 2013():750934. PubMed ID: 23690880
    [TBL] [Abstract][Full Text] [Related]  

  • 58. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential.
    Ma T; Li H; Deng L; Yang H; Lv X; Li P; Li F; Zhang R; Liu T; Yao D; Xu P
    J Neural Eng; 2017 Apr; 14(2):026015. PubMed ID: 28145274
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human error in P300 speller paradigm for brain-computer interface.
    Fazel-Rezai R
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2516-9. PubMed ID: 18002506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.