BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26736458)

  • 1. Immersive BCI with SSVEP in VR head-mounted display.
    Bonkon Koo ; Hwan-Gon Lee ; Yunjun Nam ; Seungjin Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1103-6. PubMed ID: 26736458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort.
    Choi KM; Park S; Im CH
    Comput Intell Neurosci; 2019; 2019():9680697. PubMed ID: 31354804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).
    Hwang HJ; Hwan Kim D; Han CH; Im CH
    Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-Approaching Stimulation Sequence for SSVEP-Based BCI: A Practical Use in VR/AR HMD.
    Hsu HT; Shyu KK; Hsu CC; Lee LH; Lee PL
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2754-2764. PubMed ID: 34847036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Hybrid Brain-Computer Interface for Virtual Reality Applications Using Steady-State Visual-Evoked Potential-Based Brain-Computer Interface and Electrooculogram-Based Eye Tracking for Increased Information Transfer Rate.
    Ha J; Park S; Im CH
    Front Neuroinform; 2022; 16():758537. PubMed ID: 35281718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective 2-D cursor control system using hybrid SSVEP + P300 visual brain computer interface.
    Kapgate D
    Med Biol Eng Comput; 2022 Nov; 60(11):3243-3254. PubMed ID: 36151487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An SSVEP-BCI in Augmented Reality.
    Liu P; Ke Y; Du J; Liu W; Kong L; Wang N; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5548-5551. PubMed ID: 31947111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing stimulus presentation on mobile devices for a truly portable SSVEP-based BCI.
    Wang YT; Wang Y; Cheng CK; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5271-4. PubMed ID: 24110925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 3D paradigm synchronous motion for SSVEP-based hybrid BCI-VR system.
    Niu L; Bin J; Wang JKS; Zhan G; Jia J; Zhang L; Gan Z; Kang X
    Med Biol Eng Comput; 2023 Sep; 61(9):2481-2495. PubMed ID: 37191865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards BCI-Based Interfaces for Augmented Reality: Feasibility, Design and Evaluation.
    Si-Mohammed H; Petit J; Jeunet C; Argelaguet F; Spindler F; Evain A; Roussel N; Casiez G; Lecuyer A
    IEEE Trans Vis Comput Graph; 2020 Mar; 26(3):1608-1621. PubMed ID: 30295623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of stereo-dependent SSVEP targets and their impact on VR-BCI performance.
    Liu H; Wang Z; Li R; Zhao X; Xu T; Zhou T; Hu H
    Front Neurosci; 2024; 18():1367932. PubMed ID: 38660227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies.
    Hwang HJ; Han CH; Lim JH; Kim YW; Choi SI; An KO; Lee JH; Cha HS; Hyun Kim S; Im CH
    Psychophysiology; 2017 Mar; 54(3):444-451. PubMed ID: 27914171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of high-frequency steady-state visual evoked potentials from below-the-hairline areas for a brain-computer interface based on Depth-of-Field.
    Floriano A; Delisle-Rodriguez D; Diez PF; Bastos-Filho TF
    Comput Methods Programs Biomed; 2020 Feb; 184():105271. PubMed ID: 31881401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game.
    Leite HMA; de Carvalho SN; Costa TBDS; Attux R; Hornung HH; Arantes DS
    Comput Intell Neurosci; 2018; 2018():4920132. PubMed ID: 29849549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel stimulation for multi-class SSVEP-based brain-computer interface using patterns of time-varying frequencies.
    Dehzangi O; Nathan V; Zong C; Lee C; Kim I; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():118-21. PubMed ID: 25569911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of posterized naturalistic stimuli on SSVEP-based BCI.
    Ng KB; Bradley AP; Cunnington R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3105-8. PubMed ID: 24110385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.