These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26736461)

  • 1. Detecting intention to grasp during reaching movements from EEG.
    Randazzo L; Iturrate I; Chavarriaga R; Leeb R; Del Millan JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1115-8. PubMed ID: 26736461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting intention to execute the next movement while performing current movement from EEG using global optimal constrained ICA.
    Eilbeigi E; Setarehdan SK
    Comput Biol Med; 2018 Aug; 99():63-75. PubMed ID: 29890509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques.
    Úbeda A; Azorín JM; Chavarriaga R; R Millán JD
    J Neuroeng Rehabil; 2017 Feb; 14(1):9. PubMed ID: 28143603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online detection of movement during natural and self-initiated reach-and-grasp actions from EEG signals.
    Pereira J; Kobler R; Ofner P; Schwarz A; Müller-Putz GR
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34130267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Correlation of EEG and Eye Movement in Natural Grasping Intention Estimation.
    Lin C; Zhang C; Xu J; Liu R; Leng Y; Fu C
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4329-4337. PubMed ID: 37883284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates.
    López-Larraz E; Montesano L; Gil-Agudo Á; Minguez J
    J Neuroeng Rehabil; 2014 Nov; 11():153. PubMed ID: 25398273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors that affect error potentials during a grasping task: toward a hybrid natural movement decoding BCI.
    Omedes J; Schwarz A; Müller-Putz GR; Montesano L
    J Neural Eng; 2018 Aug; 15(4):046023. PubMed ID: 29714718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework.
    Cho JH; Jeong JH; Lee SW
    IEEE Trans Cybern; 2022 Dec; 52(12):13279-13292. PubMed ID: 34748509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of different reaching movements from the same limb using EEG.
    Shiman F; López-Larraz E; Sarasola-Sanz A; Irastorza-Landa N; Spüler M; Birbaumer N; Ramos-Murguialday A
    J Neural Eng; 2017 Aug; 14(4):046018. PubMed ID: 28467325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of filtering techniques to extract movement intention information from low-frequency EEG activity.
    Bibian C; Lopez-Larraz E; Irastorza-Landa N; Birbaumer N; Ramos-Murguialday A
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2960-2963. PubMed ID: 29060519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single trial prediction of self-paced reaching directions from EEG signals.
    Lew EY; Chavarriaga R; Silvoni S; Millán Jdel R
    Front Neurosci; 2014; 8():222. PubMed ID: 25136290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical decoding of grasping commands from EEG.
    Omedes J; Schwarz A; Montesano L; Muller-Putz G
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2085-2088. PubMed ID: 29060307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 15. Detection of self-paced reaching movement intention from EEG signals.
    Lew E; Chavarriaga R; Silvoni S; Millán Jdel R
    Front Neuroeng; 2012; 5():13. PubMed ID: 23055968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring EEG spectral and temporal dynamics underlying a hand grasp movement.
    Bodda S; Diwakar S
    PLoS One; 2022; 17(6):e0270366. PubMed ID: 35737671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding the grasping intention from electromyography during reaching motions.
    Batzianoulis I; Krausz NE; Simon AM; Hargrove L; Billard A
    J Neuroeng Rehabil; 2018 Jun; 15(1):57. PubMed ID: 29940991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms.
    Jochumsen M; Rovsing C; Rovsing H; Niazi IK; Dremstrup K; Kamavuako EN
    Comput Intell Neurosci; 2017; 2017():7470864. PubMed ID: 28951736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated deep learning model for motor intention recognition of multi-class EEG Signals in upper limb amputees.
    Idowu OP; Ilesanmi AE; Li X; Samuel OW; Fang P; Li G
    Comput Methods Programs Biomed; 2021 Jul; 206():106121. PubMed ID: 33957375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.