These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26736465)

  • 1. Musculoskeletal model predicts multi-joint wrist and hand movement from limited EMG control signals.
    Crouch DL; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1132-5. PubMed ID: 26736465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control.
    Crouch DL; Huang H
    J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing EMG-Based Human-Machine Interfaces for Estimating Continuous, Coordinated Movements.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2145-2154. PubMed ID: 31478862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple EMG-driven musculoskeletal model enables consistent control performance during path tracing tasks.
    Crouch D; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1-4. PubMed ID: 28268266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task.
    Crouch DL; Huang HH
    J Neural Eng; 2017 Jun; 14(3):036008. PubMed ID: 28220759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myoelectric Control Based on a Generic Musculoskeletal Model: Toward a Multi-User Neural-Machine Interface.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1435-1442. PubMed ID: 29985153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An EMG-Driven Musculoskeletal Model for Estimating Continuous Wrist Motion.
    Zhao Y; Zhang Z; Li Z; Yang Z; Dehghani-Sanij AA; Xie S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3113-3120. PubMed ID: 33186119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myoelectric Control Based on A Generic Musculoskeletal Model: Towards A Multi-User Neural-Machine Interface.
    Pan L; Crouch DL; Huang HH
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; ():. PubMed ID: 29994312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analysis guided improvement of an electromyogram-driven lumped parameter musculoskeletal hand model.
    Hinson R; Saul K; Kamper D; Huang H
    J Biomech; 2022 Aug; 141():111200. PubMed ID: 35764012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A musculoskeletal model driven by muscle synergy-derived excitations for hand and wrist movements.
    Zhao J; Yu Y; Wang X; Ma S; Sheng X; Zhu X
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 34986472
    [No Abstract]   [Full Text] [Related]  

  • 11. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous and proportional control of wrist and hand degrees of freedom with kinematic prediction models from high-density EMG.
    Hasbani MH; Barsakcioglu DY; Jung MK; Farina D
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():764-767. PubMed ID: 36085883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of wrist posture on extrinsic finger muscle activity during single joint movements.
    Beringer CR; Mansouri M; Fisher LE; Collinger JL; Munin MC; Boninger ML; Gaunt RA
    Sci Rep; 2020 May; 10(1):8377. PubMed ID: 32433481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Myoelectric Control Schemes for Simultaneous Hand and Wrist Movement using Chronically Implanted Electromyography: A Case Series
    Segil JL; Lukyanenko P; Lambrecht J; Weir RFF; Tyler D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6224-6230. PubMed ID: 34892537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A parallel classification strategy to simultaneous control elbow, wrist, and hand movements.
    Leone F; Gentile C; Cordella F; Gruppioni E; Guglielmelli E; Zollo L
    J Neuroeng Rehabil; 2022 Jan; 19(1):10. PubMed ID: 35090512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Reinforcement Learning to Estimate Human Joint Moments From Electromyography or Joint Kinematics: An Alternative Solution to Musculoskeletal-Based Biomechanics.
    Wu W; Saul KR; Huang HH
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33332536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Reliable Multi-User EMG Interface Based on A Generic-Musculoskeletal Model against Loading Weight Changes
    Pan L; Harmody A; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2104-2107. PubMed ID: 30440818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating the length-dependent passive-force generating muscle properties of the extrinsic finger muscles into a wrist and finger biomechanical musculoskeletal model.
    Binder-Markey BI; Murray WM
    J Biomech; 2017 Aug; 61():250-257. PubMed ID: 28774467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting joint moments and angles from EMG signals.
    Shih PS; Patterson PE
    Biomed Sci Instrum; 1997; 33():191-6. PubMed ID: 9731358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing Machine Learning and Physiological Knowledge for a Novel EMG-Based Neural-Machine Interface.
    Berman J; Hinson R; Lee IC; Huang H
    IEEE Trans Biomed Eng; 2023 Apr; 70(4):1125-1136. PubMed ID: 36173785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.