These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 26736483)

  • 1. Sleep state classification using pressure sensor mats.
    Baran Pouyan M; Nourani M; Pompeo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1207-10. PubMed ID: 26736483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unobtrusive classification of sleep and wakefulness using load cells under the bed.
    Austin D; Beattie ZT; Riley T; Adami AM; Hagen CC; Hayes TL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5254-7. PubMed ID: 23367114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep-wake detection based on respiratory signal acquired through a pressure bed sensor.
    Guerrero-Mora G; Palacios E; Bianchi AM; Kortelainen J; Tenhunen M; Himanen SL; Mendez MO; Arce-Santana E; Gutierrez-Navarro O
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3452-5. PubMed ID: 23366669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating sleep parameters using nasal pressure signals applicable to continuous positive airway pressure devices.
    Park JU; Erdenebayar U; Joo EY; Lee KJ
    Physiol Meas; 2017 Jun; 38(7):1441-1455. PubMed ID: 28489018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep-wake detection using recurrence quantification analysis.
    Parro VC; Valdo L
    Chaos; 2018 Aug; 28(8):085706. PubMed ID: 30180645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive sleep-wake discrimination for wearable devices.
    Karlen W; Floreano D
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):920-6. PubMed ID: 21172750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep/wake measurement using a non-contact biomotion sensor.
    De Chazal P; Fox N; O'Hare E; Heneghan C; Zaffaroni A; Boyle P; Smith S; O'Connell C; McNicholas WT
    J Sleep Res; 2011 Jun; 20(2):356-66. PubMed ID: 20704645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic sleep/wake scoring from body motion in bed: validation of a newly developed sensor placed under a mattress.
    Kogure T; Shirakawa S; Shimokawa M; Hosokawa Y
    J Physiol Anthropol; 2011; 30(3):103-9. PubMed ID: 21636953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithms for using an activity-based accelerometer for identification of infant sleep-wake states during nap studies.
    Galland BC; Kennedy GJ; Mitchell EA; Taylor BJ
    Sleep Med; 2012 Jun; 13(6):743-51. PubMed ID: 22542788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep-Wake Classification using Statistical Features Extracted from Photoplethysmographic Signals.
    Motin MA; Kumar Karmakar C; Penzel T; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5564-5567. PubMed ID: 31947116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Addressing the challenges of sleep/wake class imbalance in bed based non-contact actigraphic recordings of sleep.
    McDowell A; Donnelly MP; Nugent CD; Galway L; McGrath MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4654-7. PubMed ID: 24110772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep-wake transition in narcolepsy and healthy controls using a support vector machine.
    Jensen JB; Sorensen HB; Kempfner J; Sørensen GL; Knudsen S; Jennum P
    J Clin Neurophysiol; 2014 Oct; 31(5):397-401. PubMed ID: 25271675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of sleep-wake classification using electroencephalogram and wrist-worn multi-modal sensor data.
    Sano A; Picard RW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():930-3. PubMed ID: 25570112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-based sleep-wake identification: an empirical test of methodological issues.
    Sadeh A; Sharkey KM; Carskadon MA
    Sleep; 1994 Apr; 17(3):201-7. PubMed ID: 7939118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and validation of a computer-based sleep-scoring algorithm.
    Louis RP; Lee J; Stephenson R
    J Neurosci Methods; 2004 Feb; 133(1-2):71-80. PubMed ID: 14757347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Sleep Quality Assessment Using Wearable Sensors by Including Information From Postural/Sleep Position Changes and Body Acceleration: A Comparison of Chest-Worn Sensors, Wrist Actigraphy, and Polysomnography.
    Razjouyan J; Lee H; Parthasarathy S; Mohler J; Sharafkhaneh A; Najafi B
    J Clin Sleep Med; 2017 Nov; 13(11):1301-1310. PubMed ID: 28992827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of sleep/wake patterns using a non-contact biomotion sensor.
    de Chazal P; O'Hare E; Fox N; Heneghan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():514-7. PubMed ID: 19162706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algorithms for sleep-wake identification using actigraphy: a comparative study and new results.
    Tilmanne J; Urbain J; Kothare MV; Wouwer AV; Kothare SV
    J Sleep Res; 2009 Mar; 18(1):85-98. PubMed ID: 19250177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic sleep/wake identification from wrist activity.
    Cole RJ; Kripke DF; Gruen W; Mullaney DJ; Gillin JC
    Sleep; 1992 Oct; 15(5):461-9. PubMed ID: 1455130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot study: validating staff nurses' observations of sleep and wake states among critically ill patients, using polysomnography.
    Edwards GB; Schuring LM
    Am J Crit Care; 1993 Mar; 2(2):125-31. PubMed ID: 8358460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.