BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26736494)

  • 1. A smart phone-based robust correction algorithm for the colorimetric detection of Urinary Tract Infection.
    Karlsen H; Tao Dong
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1251-4. PubMed ID: 26736494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Illumination and device independence for colorimetric detection of urinary biomarkers with smartphone.
    Karisen H; Tao Dong
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5184-5187. PubMed ID: 28269432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Smartphone-Based Automatic Measurement Method for Colorimetric pH Detection Using a Color Adaptation Algorithm.
    Kim SD; Koo Y; Yun Y
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28698532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A smart tablet-phone-based system using dynamic light modulation for highly sensitive colorimetric biosensing.
    Wang H; Zou Q; Xiang Y; Yang J; Xu Z; Yang W; Wu Y; Wu J; Liu D; Hu N; Zhang D
    Talanta; 2023 Jan; 252():123862. PubMed ID: 36084571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel systems solution for accurate colorimetric measurement through smartphone-based augmented reality.
    Zhang G; Song S; Panescu J; Shapiro N; Dannemiller KC; Qin R
    PLoS One; 2023; 18(6):e0287099. PubMed ID: 37319291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feasible image-based colorimetric assay using a smartphone RGB camera for point-of-care monitoring of diabetes.
    Wang TT; Lio CK; Huang H; Wang RY; Zhou H; Luo P; Qing LS
    Talanta; 2020 Jan; 206():120211. PubMed ID: 31514873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the smartphone-based colorimetry for multi-analyte sensing arrays.
    Hong JI; Chang BY
    Lab Chip; 2014 May; 14(10):1725-32. PubMed ID: 24671456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical color correction for camera cell phone images.
    Siddiqui H; Bouman CA
    IEEE Trans Image Process; 2008 Nov; 17(11):2138-55. PubMed ID: 18972655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smartphone-Based Rapid Screening of Urinary Biomarkers.
    Karlsen H; Dong T
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):455-463. PubMed ID: 28320676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smartphone-based, sensitive µPAD detection of urinary tract infection and gonorrhea.
    Cho S; Park TS; Nahapetian TG; Yoon JY
    Biosens Bioelectron; 2015 Dec; 74():601-11. PubMed ID: 26190472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A remote computing based point-of-care colorimetric detection system with a smartphone under complex ambient light conditions.
    Bao X; Jiang S; Wang Y; Yu M; Han J
    Analyst; 2018 Mar; 143(6):1387-1395. PubMed ID: 29451280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smartphone-based pathogen diagnosis in urinary sepsis patients.
    Barnes L; Heithoff DM; Mahan SP; Fox GN; Zambrano A; Choe J; Fitzgibbons LN; Marth JD; Fried JC; Soh HT; Mahan MJ
    EBioMedicine; 2018 Oct; 36():73-82. PubMed ID: 30245056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic colorimetric immunoassay for sensitive detection of altenariol monomethyl ether by UV spectroscopy and smart phone imaging.
    Man Y; Li A; Li B; Liu J; Pan L
    Anal Chim Acta; 2019 Dec; 1092():75-84. PubMed ID: 31708035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor.
    Xiao W; Xiao M; Fu Q; Yu S; Shen H; Bian H; Tang Y
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-sensitive and high-efficient biochemical analysis method using a bionic electronic eye in combination with a smartphone-based colorimetric reader system.
    Kaiqi Su ; Quchao Zou ; Ning Hu ; Ping Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7720-3. PubMed ID: 26738081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accessory-free quantitative smartphone imaging of colorimetric paper-based assays.
    Kong T; You JB; Zhang B; Nguyen B; Tarlan F; Jarvi K; Sinton D
    Lab Chip; 2019 Jun; 19(11):1991-1999. PubMed ID: 31044203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tools for water quality monitoring and mapping using paper-based sensors and cell phones.
    Sicard C; Glen C; Aubie B; Wallace D; Jahanshahi-Anbuhi S; Pennings K; Daigger GT; Pelton R; Brennan JD; Filipe CD
    Water Res; 2015 Mar; 70():360-9. PubMed ID: 25546358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Efficiency of Color Space Channels to Quantify Color and Color Intensity Change in Liquids, pH Strips, and Lateral Flow Assays with Smartphones.
    Nelis JLD; Bura L; Zhao Y; Burkin KM; Rafferty K; Elliott CT; Campbell K
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel smartphone-based CD-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid.
    Kong L; Gan Y; Liang T; Zhong L; Pan Y; Kirsanov D; Legin A; Wan H; Wang P
    Anal Chim Acta; 2020 Jan; 1093():150-159. PubMed ID: 31735208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of Colorimetric Data for Paper-Based Analytical Devices.
    Soda Y; Bakker E
    ACS Sens; 2019 Dec; 4(12):3093-3101. PubMed ID: 31744290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.