These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26736502)

  • 1. Goniometric measurement for the estimation of anisotropy coefficient of human and animal pancreas.
    Saccomandi P; Schena E; Massaroni C; Di Matteo FM; Silvestri S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1283-6. PubMed ID: 26736502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of anisotropy coefficient and total attenuation of swine liver at 850 nm based on a goniometric technique: influence of sample thickness.
    Saccomandi P; Vogel V; Bazrafshan B; Schena E; Vogl TJ; Silvestri S; Mäntele W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5332-5. PubMed ID: 25571198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of anisotropy coefficient of swine pancreas, liver and muscle at 1064 nm based on goniometric technique.
    Saccomandi P; Vogel V; Bazrafshan B; Maurer J; Schena E; Vogl TJ; Silvestri S; Mäntele W
    J Biophotonics; 2015 May; 8(5):422-8. PubMed ID: 24995557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of optical properties of neuroendocrine pancreas tumor with double-integrating-sphere system and inverse Monte Carlo model.
    Saccomandi P; Larocca ES; Rendina V; Schena E; D'Ambrosio R; Crescenzi A; Di Matteo FM; Silvestri S
    Lasers Med Sci; 2016 Aug; 31(6):1041-50. PubMed ID: 27147075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient.
    Hall G; Jacques SL; Eliceiri KW; Campagnola PJ
    Biomed Opt Express; 2012 Nov; 3(11):2707-19. PubMed ID: 23162710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of scattering phase function utilizing laser Doppler power density spectra.
    Wojtkiewicz S; Liebert A; Rix H; Sawosz P; Maniewski R
    Phys Med Biol; 2013 Feb; 58(4):937-55. PubMed ID: 23340453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission.
    Wang L; Jacques SL
    Phys Med Biol; 1994 Dec; 39(12):2349-54. PubMed ID: 15551558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multispectral measurement of scattering-angular light distribution in apple skin and flesh samples.
    Askoura ML; Vaudelle F; L'Huillier JP
    Appl Opt; 2016 Nov; 55(32):9217-9225. PubMed ID: 27857310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution angle-resolved measurements of light scattered at small angles by red blood cells in suspension.
    Turcu I; Pop CV; Neamtu S
    Appl Opt; 2006 Mar; 45(9):1964-71. PubMed ID: 16579566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of optical constants from multiple-scattered light using approximations for single particle scattering characteristics.
    Velazco-Roa MA; Thennadil SN
    Appl Opt; 2007 Dec; 46(35):8453-60. PubMed ID: 18071375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The optical properties of the cochlear bone.
    Ugnell AO; Oberg PA
    Med Eng Phys; 1997 Oct; 19(7):630-6. PubMed ID: 9457696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements.
    Yaroslavsky AN; Yaroslavsky IV; Goldbach T; Schwarzmaier HJ
    J Biomed Opt; 1999 Jan; 4(1):47-53. PubMed ID: 23015169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical properties of human normal small intestine tissue determined by Kubelka-Munk method in vitro.
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    World J Gastroenterol; 2003 Sep; 9(9):2068-72. PubMed ID: 12970908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of porcine pancreas optical properties in the 600-1100 nm wavelength range for light-based therapies.
    Lanka P; Bianchi L; Farina A; De Landro M; Pifferi A; Saccomandi P
    Sci Rep; 2022 Aug; 12(1):14300. PubMed ID: 35995952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective phase function for light scattered by blood.
    Turcu I
    Appl Opt; 2006 Feb; 45(4):639-47. PubMed ID: 16485674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A scattering phase function for blood with physiological haematocrit.
    Hammer M; Yaroslavsky AN; Schweitzer D
    Phys Med Biol; 2001 Mar; 46(3):N65-9. PubMed ID: 11277234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the scattering coefficient and the anisotropy factor from laser Doppler spectra of liquids including blood.
    Kienle A; Patterson MS; Ott L; Steiner R
    Appl Opt; 1996 Jul; 35(19):3404-12. PubMed ID: 21102728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic scattering of discrete particle arrays.
    Paul JS; Fu WC; Dokos S; Box M
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):951-9. PubMed ID: 20448759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-function normalization for accurate analysis of ultrafast collimated radiative transfer.
    Hunter B; Guo Z
    Appl Opt; 2012 Apr; 51(12):2192-201. PubMed ID: 22534933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.