These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26736585)

  • 1. Annotation and prediction of stress and workload from physiological and inertial signals.
    Ghosh A; Danieli M; Riccardi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1621-4. PubMed ID: 26736585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Multi-Modal Estimation of Dynamically Evoked Emotions Using EEG, Heart Rate and Galvanic Skin Response.
    Val-Calvo M; Álvarez-Sánchez JR; Ferrández-Vicente JM; Díaz-Morcillo A; Fernández-Jover E
    Int J Neural Syst; 2020 Apr; 30(4):2050013. PubMed ID: 32114841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry.
    Gilmore J; Nasseri M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject-independent emotion recognition based on physiological signals: a three-stage decision method.
    Chen J; Hu B; Wang Y; Moore P; Dai Y; Feng L; Ding Z
    BMC Med Inform Decis Mak; 2017 Dec; 17(Suppl 3):167. PubMed ID: 29297324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study.
    Can YS; Chalabianloo N; Ekiz D; Ersoy C
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of variations in cognitive workload using multi-modality physiological sensors and a large margin unbiased regression machine.
    Zhang H; Zhu Y; Maniyeri J; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2985-8. PubMed ID: 25570618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. User stress detection in human-computer interactions.
    Zhai J; Barreto AB; Chin C; Li C
    Biomed Sci Instrum; 2005; 41():277-82. PubMed ID: 15850118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of Perceived Human Stress using Physiological Signals.
    Arsalan A; Majid M; Anwar SM; Bagci U
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1247-1250. PubMed ID: 31946118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Objective detection of chronic stress using physiological parameters.
    Al Abdi RM; Alhitary AE; Abdul Hay EW; Al-Bashir AK
    Med Biol Eng Comput; 2018 Dec; 56(12):2273-2286. PubMed ID: 29911251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress detection in computer users based on digital signal processing of noninvasive physiological variables.
    Zhai J; Barreto A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1355-8. PubMed ID: 17946041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised classification of operator workload from brain signals.
    Schultze-Kraft M; Dähne S; Gugler M; Curio G; Blankertz B
    J Neural Eng; 2016 Jun; 13(3):036008. PubMed ID: 27078889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability of Physiological Responses Induced by Basic Emotions: A Pilot Study.
    Jang EH; Byun S; Park MS; Sohn JH
    J Physiol Anthropol; 2019 Nov; 38(1):15. PubMed ID: 31779708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote detection of mental workload changes using cardiac parameters assessed with a low-cost webcam.
    Bousefsaf F; Maaoui C; Pruski A
    Comput Biol Med; 2014 Oct; 53():154-63. PubMed ID: 25150821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of physiological signals for recognition of boredom, pain, and surprise emotions.
    Jang EH; Park BJ; Park MS; Kim SH; Sohn JH
    J Physiol Anthropol; 2015 Jun; 34(1):25. PubMed ID: 26084816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling perceived stress via HRV and accelerometer sensor streams.
    Wu M; Cao H; Nguyen HL; Surmacz K; Hargrove C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1625-8. PubMed ID: 26736586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Associations Between Physiological Signals Captured Using Wearable Sensors and Self-reported Outcomes Among Adults in Alcohol Use Disorder Recovery: Development and Usability Study.
    Alinia P; Sah RK; McDonell M; Pendry P; Parent S; Ghasemzadeh H; Cleveland MJ
    JMIR Form Res; 2021 Jul; 5(7):e27891. PubMed ID: 34287205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals.
    Khezri M; Firoozabadi M; Sharafat AR
    Comput Methods Programs Biomed; 2015 Nov; 122(2):149-64. PubMed ID: 26253158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature Weight Driven Interactive Mutual Information Modeling for Heterogeneous Bio-Signal Fusion to Estimate Mental Workload.
    Zhang P; Wang X; Chen J; You W
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29023364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emotion recognition from physiological signals.
    Gouizi K; Bereksi Reguig F; Maaoui C
    J Med Eng Technol; 2011; 35(6-7):300-7. PubMed ID: 21936746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Design of CNN Architectures for Optimal Six Basic Emotion Classification Using Multiple Physiological Signals.
    Oh S; Lee JY; Kim DK
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.