These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 26736599)
1. Influence of multiple dynamic factors on the performance of myoelectric pattern recognition. Khushaba RN; Al-Timemy A; Kodagoda S Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1679-82. PubMed ID: 26736599 [TBL] [Abstract][Full Text] [Related]
2. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees. Geng Y; Zhou P; Li G J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049 [TBL] [Abstract][Full Text] [Related]
3. Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control. Hargrove LJ; Li G; Englehart KB; Hudgins BS IEEE Trans Biomed Eng; 2009 May; 56(5):1407-14. PubMed ID: 19473932 [TBL] [Abstract][Full Text] [Related]
4. Dynamic time warping for reducing the effect of force variation on myoelectric control of hand prostheses. Powar OS; Chemmangat K J Electromyogr Kinesiol; 2019 Oct; 48():152-160. PubMed ID: 31357113 [TBL] [Abstract][Full Text] [Related]
5. Correlation analysis of electromyogram signals for multiuser myoelectric interfaces. Khushaba RN IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):745-55. PubMed ID: 24760933 [TBL] [Abstract][Full Text] [Related]
6. A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition. Khushaba RN; Al-Timemy AH; Al-Ani A; Al-Jumaily A IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1821-1831. PubMed ID: 28358690 [TBL] [Abstract][Full Text] [Related]
7. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control. Daley H; Englehart K; Hargrove L; Kuruganti U J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773 [TBL] [Abstract][Full Text] [Related]
8. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control. Adewuyi AA; Hargrove LJ; Kuiken TA IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):485-94. PubMed ID: 25955989 [TBL] [Abstract][Full Text] [Related]
9. Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns. Pan L; Zhang D; Jiang N; Sheng X; Zhu X J Neuroeng Rehabil; 2015 Dec; 12():110. PubMed ID: 26631105 [TBL] [Abstract][Full Text] [Related]
10. The effect of time on EMG classification of hand motions in able-bodied and transradial amputees. Waris A; Niazi IK; Jamil M; Gilani O; Englehart K; Jensen W; Shafique M; Kamavuako EN J Electromyogr Kinesiol; 2018 Jun; 40():72-80. PubMed ID: 29689443 [TBL] [Abstract][Full Text] [Related]
11. Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions. Waris A; Niazi IK; Jamil M; Englehart K; Jensen W; Kamavuako EN IEEE J Biomed Health Inform; 2019 Jul; 23(4):1526-1534. PubMed ID: 30106701 [TBL] [Abstract][Full Text] [Related]
12. Spatially Filtered Low-Density EMG and Time-Domain Descriptors Improves Hand Movement Recognition. Al Taee AA; Khushaba RN; Al-Jumaily A Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2671-2674. PubMed ID: 31946445 [TBL] [Abstract][Full Text] [Related]
13. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features. Khushaba RN; Takruri M; Miro JV; Kodagoda S Neural Netw; 2014 Jul; 55():42-58. PubMed ID: 24721224 [TBL] [Abstract][Full Text] [Related]
14. Feature dimensionality reduction for myoelectric pattern recognition: a comparison study of feature selection and feature projection methods. Liu J Med Eng Phys; 2014 Dec; 36(12):1716-20. PubMed ID: 25292451 [TBL] [Abstract][Full Text] [Related]
16. Hand motion estimation by EMG signals using linear multiple regression models. Kitamura T; Tsujiuchi N; Koizumi T Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1339-42. PubMed ID: 17945636 [TBL] [Abstract][Full Text] [Related]
17. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography. Al-Timemy AH; Bugmann G; Escudero J; Outram N IEEE J Biomed Health Inform; 2013 May; 17(3):608-18. PubMed ID: 24592463 [TBL] [Abstract][Full Text] [Related]
18. Resolving the effect of wrist position on myoelectric pattern recognition control. Adewuyi AA; Hargrove LJ; Kuiken TA J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991 [TBL] [Abstract][Full Text] [Related]
19. Ranking hand movements for myoelectric pattern recognition considering forearm muscle structure. Na Y; Kim SJ; Jo S; Kim J Med Biol Eng Comput; 2017 Aug; 55(8):1507-1518. PubMed ID: 28054301 [TBL] [Abstract][Full Text] [Related]
20. Whitening of the electromyogram for improved classification accuracy in prosthesis control. Liu L; Liu P; Clancy EA; Scheme E; Englehart KB Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2627-30. PubMed ID: 23366464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]