BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26736653)

  • 1. A method for localized computation of Pulse Wave Velocity in carotid structure.
    Patil RB; Krishnamoorthy P; Sethuraman S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1898-901. PubMed ID: 26736653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method to detect tortuosity of vessel using non imaging ultrasound approach in carotid structure.
    Patil RB; Krishnamoorthy P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3555-3559. PubMed ID: 28269066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaussian mixture model based identification of arterial wall movement for computation of distension waveform.
    Patil RB; Krishnamoorthy P; Sethuraman S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():85-8. PubMed ID: 26736206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion Tolerant Unfocused Imaging of Physiological Waveforms for Blood Pressure Waveform Estimation Using Ultrasound.
    Seo J; Pietrangelo SJ; Sodini CG; Lee HS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 May; 65(5):766-779. PubMed ID: 29733280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional assessment of carotid artery pulse wave velocity using compressed sensing accelerated high temporal resolution 2D CINE phase contrast cardiovascular magnetic resonance.
    Peper ES; Strijkers GJ; Gazzola K; Potters WV; Motaal AG; Luirink IK; Hutten BA; Wiegman A; van Ooij P; van den Born BH; Nederveen AJ; Coolen BF
    J Cardiovasc Magn Reson; 2018 Dec; 20(1):86. PubMed ID: 30567566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional Upstroke Tracking for Transit Time Detection to Improve the Ultrasound-Based Local PWV Estimation in Carotid Arteries.
    Deng L; Zhang Y; Chen Z; Zhao Z; Zhang K; Wu J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):691-702. PubMed ID: 31714222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automated carotid pulse assessment approach using Doppler ultrasound.
    Yu AH; Cohen-Solal E; Raju BI; Ayati S
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1072-81. PubMed ID: 18334399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique.
    Nabeel PM; Jayaraj J; Mohanasankar S
    Physiol Meas; 2017 Nov; 38(12):2122-2140. PubMed ID: 29058686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive assessment of pulse wave velocity in mice by means of ultrasound images.
    Di Lascio N; Stea F; Kusmic C; Sicari R; Faita F
    Atherosclerosis; 2014 Nov; 237(1):31-7. PubMed ID: 25194332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised deep learning-based displacement estimation for vascular elasticity imaging applications.
    Karageorgos GM; Liang P; Mobadersany N; Gami P; Konofagou EE
    Phys Med Biol; 2023 Jul; 68(15):. PubMed ID: 37348487
    [No Abstract]   [Full Text] [Related]  

  • 11. Measurement of local pulse wave velocity for carotid artery by using an ultrasound-based method.
    Tang CJ; Lee PY; Chuang YH; Huang CC
    Ultrasonics; 2020 Mar; 102():106064. PubMed ID: 31955815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Different Pulse Waveforms for Local Pulse Wave Velocity Measurement in Healthy and Hypertensive Common Carotid Arteries in Vivo.
    Huang C; Su Y; Zhang H; Qian LX; Luo J
    Ultrasound Med Biol; 2016 May; 42(5):1111-23. PubMed ID: 26924694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of parameters on the accuracy and precision of ultrasound-based local pulse wave velocity measurement: a simulation study.
    Huang C; Ren TL; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):2001-18. PubMed ID: 25474776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High frame rate and high line density ultrasound imaging for local pulse wave velocity estimation using motion matching: A feasibility study on vessel phantoms.
    Li F; He Q; Huang C; Liu K; Shao J; Luo J
    Ultrasonics; 2016 Apr; 67():41-54. PubMed ID: 26773791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arterial compliance probe for cuffless evaluation of carotid pulse pressure.
    Joseph J; P M N; Shah MI; Sivaprakasam M
    PLoS One; 2018; 13(8):e0202480. PubMed ID: 30114216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Spectral Envelope Estimation for Doppler Ultrasound.
    Kathpalia A; Karabiyik Y; Eik-Nes SH; Tegnander E; Ekroll IK; Kiss G; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1825-1838. PubMed ID: 27824563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local pulse wave velocity estimation using magnetic plethysmograph.
    Chandrasekhar A; Joseph J; Sivaprakasam M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2287-90. PubMed ID: 24110181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bi-Modal Arterial Compliance Probe for Calibration-Free Cuffless Blood Pressure Estimation.
    P M N; Joseph J; Karthik S; Sivaprakasam M; Chenniappan M
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2392-2404. PubMed ID: 30130174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructive interpolation for pulse wave estimation to improve local PWV measurement of carotid artery.
    Gu O; He B; Xiong L; Zhang Y; Li Z; Lang X
    Med Biol Eng Comput; 2024 May; 62(5):1459-1473. PubMed ID: 38252371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of Pulse-Wave Velocity on Arterial Wall of Mice Through High-Frequency Ultrafast Doppler Imaging.
    Huang YH; Huang H; Chuang YH; Mo FE; Huang CC
    IEEE Trans Biomed Eng; 2023 Dec; 70(12):3366-3372. PubMed ID: 37318964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.