These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26736655)

  • 1. Chromatic and high-frequency cVEP-based BCI paradigm.
    Aminaka D; Makino S; Rutkowski TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1906-9. PubMed ID: 26736655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New approach for designing cVEP BCI stimuli based on superposition of edge responses.
    Yasinzai MN; Ider YZ
    Biomed Phys Eng Express; 2020 Jun; 6(4):045018. PubMed ID: 33444278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Frequency SSVEP Stimulation Paradigm Based On Dual Frequency Modulation
    Liang L; Yang C; Wang Y; Gao X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6184-6187. PubMed ID: 31947255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces.
    Dreyer AM; Herrmann CS
    J Neurosci Methods; 2015 Feb; 241():1-9. PubMed ID: 25522824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events.
    Wu Y; Li M; Wang J
    J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces.
    Waytowich NR; Krusienski DJ
    J Neural Eng; 2015 Jun; 12(3):036006. PubMed ID: 25875047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface.
    Thielen J; Marsman P; Farquhar J; Desain P
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33690182
    [No Abstract]   [Full Text] [Related]  

  • 8. Using a cVEP-Based Brain-Computer Interface to Control a Virtual Agent.
    Riechmann H; Finke A; Ritter H
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):692-9. PubMed ID: 26469340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Steady-State Visual Evoked Potential (SSVEP) with LCD vs. LED Stimulation.
    Mu J; Grayden DB; Tan Y; Oetomo D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2946-2949. PubMed ID: 33018624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel stimulation method for multi-class SSVEP-BCI using intermodulation frequencies.
    Chen X; Wang Y; Zhang S; Gao S; Hu Y; Gao X
    J Neural Eng; 2017 Apr; 14(2):026013. PubMed ID: 28091397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic detection of code-modulated visual evoked potentials using novel covariance estimators and short-time EEG signals.
    Zarei A; Mohammadzadeh Asl B
    Comput Biol Med; 2022 Aug; 147():105771. PubMed ID: 35792474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).
    Hwang HJ; Hwan Kim D; Han CH; Im CH
    Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of steady-state visual and somatosensory evoked potentials for brain-computer interface control.
    Smith DJ; Varghese LA; Stepp CE; Guenther FH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1234-7. PubMed ID: 25570188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability-based automatic repeat request for short code modulation visual evoked potentials in brain computer interfaces.
    Sato J; Washizawa Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():562-5. PubMed ID: 26736324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of higher frequency on the classification of steady-state visual evoked potentials.
    Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW
    J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SSVEP-based brain-computer interfaces using FSK-modulated visual stimuli.
    Kimura Y; Tanaka T; Higashi H; Morikawa N
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2831-8. PubMed ID: 23739780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Different Visual Feedback Methods for Brain-Computer Interfaces (BCI) Based on Code-Modulated Visual Evoked Potentials (cVEP).
    Fodor MA; Herschel H; Cantürk A; Heisenberg G; Volosyak I
    Brain Sci; 2024 Aug; 14(8):. PubMed ID: 39199537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding.
    Ge S; Jiang Y; Wang P; Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cVEP Training Data Validation-Towards Optimal Training Set Composition from Multi-Day Data.
    Stawicki P; Volosyak I
    Brain Sci; 2022 Feb; 12(2):. PubMed ID: 35203998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.