These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26736678)

  • 1. Atlas-based segmentation of abdominal organs in 3D ultrasound, and its application in automated kidney segmentation.
    Marsousi M; Plataniotis KN; Stergiopoulos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2001-5. PubMed ID: 26736678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-based kidney detection and segmentation in three-dimensional abdominal ultrasound images.
    Marsousi M; Plataniotis KN; Stergiopoulos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2890-4. PubMed ID: 25570595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Automated Approach for Kidney Segmentation in Three-Dimensional Ultrasound Images.
    Marsousi M; Plataniotis KN; Stergiopoulos S
    IEEE J Biomed Health Inform; 2017 Jul; 21(4):1079-1094. PubMed ID: 27323382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning.
    Zhou X; Wang S; Chen H; Hara T; Yokoyama R; Kanematsu M; Fujita H
    Comput Med Imaging Graph; 2012 Jun; 36(4):304-13. PubMed ID: 22421130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint co-segmentation and registration of 3D ultrasound images.
    Prevost R; Cuingnet R; Mory B; Correas JM; Cohen LD; Ardon R
    Inf Process Med Imaging; 2013; 23():268-79. PubMed ID: 24683975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An adaptive probabilistic atlas for anomalous brain segmentation in MR images.
    Martins SB; Bragantini J; Falcão AX; Yasuda CL
    Med Phys; 2019 Nov; 46(11):4940-4950. PubMed ID: 31423590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
    Wang J; Cheng Y; Guo C; Wang Y; Tamura S
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.
    Wang Y; Zhou Y; Shen W; Park S; Fishman EK; Yuille AL
    Med Image Anal; 2019 Jul; 55():88-102. PubMed ID: 31035060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-paced DenseNet with boundary constraint for automated multi-organ segmentation on abdominal CT images.
    Tong N; Gou S; Niu T; Yang S; Sheng K
    Phys Med Biol; 2020 Jul; 65(13):135011. PubMed ID: 32657281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic renal lesion segmentation in ultrasound images based on saliency features, improved LBP, and an edge indicator under level set framework.
    Gui L; Yang X
    Med Phys; 2018 Jan; 45(1):223-235. PubMed ID: 29131363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Kidney Segmentation from Abdominal Images Using Spatial-Appearance Models.
    Khalifa F; Soliman A; Elmaghraby A; Gimel'farb G; El-Baz A
    Comput Math Methods Med; 2017; 2017():9818506. PubMed ID: 28280519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.
    He B; Huang C; Sharp G; Zhou S; Hu Q; Fang C; Fan Y; Jia F
    Med Phys; 2016 May; 43(5):2421. PubMed ID: 27147353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liver Segmentation in Abdominal CT Images Using Probabilistic Atlas and Adaptive 3D Region Growing.
    Rafiei S; Karimi N; Mirmahboub B; Najarian K; Felfeliyan B; Samavi S; Reza Soroushmehr SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6310-6313. PubMed ID: 31947285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.
    Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y
    Med Image Anal; 2015 Dec; 26(1):1-18. PubMed ID: 26277022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-modality multi-atlas segmentation of torso organs from [
    Wang H; Zhang N; Huo L; Zhang B
    Int J Comput Assist Radiol Surg; 2019 Mar; 14(3):473-482. PubMed ID: 30390179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Dynamic Graph Cuts Method with Integrated Multiple Feature Maps for Segmenting Kidneys in 2D Ultrasound Images.
    Zheng Q; Warner S; Tasian G; Fan Y
    Acad Radiol; 2018 Sep; 25(9):1136-1145. PubMed ID: 29449144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation of malignant lesions in 3D breast ultrasound using a depth-dependent model.
    Tan T; Gubern-Mérida A; Borelli C; Manniesing R; van Zelst J; Wang L; Zhang W; Platel B; Mann RM; Karssemeijer N
    Med Phys; 2016 Jul; 43(7):4074. PubMed ID: 27370126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple abdominal organ segmentation: an atlas-based fuzzy connectedness approach.
    Zhou Y; Bai J
    IEEE Trans Inf Technol Biomed; 2007 May; 11(3):348-52. PubMed ID: 17521085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.
    Gu P; Lee WM; Roubidoux MA; Yuan J; Wang X; Carson PL
    Ultrasonics; 2016 Feb; 65():51-8. PubMed ID: 26547117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.