These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26736686)

  • 1. Automatic detection, extraction and analysis of unrestrained gait using a wearable sensor system.
    Ahmadi A; Richter C; O'Connor NE; Moran K
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2034-7. PubMed ID: 26736686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait and balance analysis for patients with Alzheimer's disease using an inertial-sensor-based wearable instrument.
    Hsu YL; Chung PC; Wang WH; Pai MC; Wang CY; Lin CW; Wu HL; Wang JS
    IEEE J Biomed Health Inform; 2014 Nov; 18(6):1822-30. PubMed ID: 25375679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wireless trigger for synchronization of wearable sensors to external systems during recording of human gait.
    Kugler P; Schlarb H; Blinn J; Picard A; Eskofier B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4537-40. PubMed ID: 23366937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry.
    Sant'anna A; Wickström N
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1180-7. PubMed ID: 20371410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review.
    Chen S; Lach J; Lo B; Yang GZ
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1521-1537. PubMed ID: 28113185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait cycle spectrogram analysis using a torso-attached inertial sensor.
    Yuwono M; Su SW; Moulton BD; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6539-42. PubMed ID: 23367427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drift removal for improving the accuracy of gait parameters using wearable sensor systems.
    Takeda R; Lisco G; Fujisawa T; Gastaldi L; Tohyama H; Tadano S
    Sensors (Basel); 2014 Dec; 14(12):23230-47. PubMed ID: 25490587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ear-worn sensor for the detection of gait impairment after abdominal surgery.
    Atallah L; Aziz O; Gray E; Lo B; Yang GZ
    Surg Innov; 2013 Feb; 20(1):86-94. PubMed ID: 22641465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing a portable gait cycle detection system using an inertial sensor and evaluating the accuracy of the gait cycle detection.
    Park MH; Kwak KY; Kim DW
    Technol Health Care; 2015; 24 Suppl 1():S69-76. PubMed ID: 26409541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eight-Week Remote Monitoring Using a Freely Worn Device Reveals Unstable Gait Patterns in Older Fallers.
    Brodie MA; Lord SR; Coppens MJ; Annegarn J; Delbaere K
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2588-94. PubMed ID: 25993701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating bradykinesia severity in Parkinson's disease by analysing gait through a waist-worn sensor.
    Samà A; Pérez-López C; Rodríguez-Martín D; Català A; Moreno-Aróstegui JM; Cabestany J; de Mingo E; Rodríguez-Molinero A
    Comput Biol Med; 2017 May; 84():114-123. PubMed ID: 28351715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic detection of temporal gait parameters in poststroke individuals.
    Lopez-Meyer P; Fulk GD; Sazonov ES
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):594-601. PubMed ID: 21317087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting Power-Efficient Signal Features for a Low-Power Fall Detector.
    Wang C; Redmond SJ; Lu W; Stevens MC; Lord SR; Lovell NH
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2729-2736. PubMed ID: 28212076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of algorithms for body-worn sensor-based spatiotemporal gait parameters to the GAITRite electronic walkway.
    Greene BR; Foran TG; McGrath D; Doheny EP; Burns A; Caulfield B
    J Appl Biomech; 2012 Jul; 28(3):349-55. PubMed ID: 22087019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online learning of gait models for calculation of gait parameters.
    Waugh JL; Trinh A; Mohammed RR; McIlroy WE; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6146-6149. PubMed ID: 28269655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi real-time gait event detection using shank-attached gyroscopes.
    Lee JK; Park EJ
    Med Biol Eng Comput; 2011 Jun; 49(6):707-12. PubMed ID: 21267666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of gait patterns in the time-frequency domain.
    Nyan MN; Tay FE; Seah KH; Sitoh YY
    J Biomech; 2006; 39(14):2647-56. PubMed ID: 16212968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.