These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 26736745)

  • 21. Enhancing detection of steady-state visual evoked potentials using individual training data.
    Wang Y; Nakanishi M; Wang YT; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3037-40. PubMed ID: 25570631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A High-Rate Hybrid BCI System Based on High-Frequency SSVEP and sEMG.
    Cui H; Chi X; Wang L; Chen X
    IEEE J Biomed Health Inform; 2023 Dec; 27(12):5688-5698. PubMed ID: 37792662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Error Correction Regression Framework for Enhancing the Decoding Accuracies of Ear-EEG Brain-Computer Interfaces.
    Kwak NS; Lee SW
    IEEE Trans Cybern; 2020 Aug; 50(8):3654-3667. PubMed ID: 31295141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of ear electrodes for SSVEP-based BCI.
    Zhao H; Zheng L; Yuan M; Wang Y; Gao X; Liu R; Pei W
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37336205
    [No Abstract]   [Full Text] [Related]  

  • 25. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A sub-region combination scheme for spatial coding in a high-frequency SSVEP-based BCI.
    Hu R; Ming G; Wang Y; Gao X
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37467742
    [No Abstract]   [Full Text] [Related]  

  • 27. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Channel Projection-Based CCA Target Identification Method for an SSVEP-Based BCI System of Quadrotor Helicopter Control.
    Gao Q; Zhang Y; Wang Z; Dong E; Song X; Song Y
    Comput Intell Neurosci; 2019; 2019():2361282. PubMed ID: 31933620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A BCI painting system using a hybrid control approach based on SSVEP and P300.
    Tang Z; Wang X; Wu J; Ping Y; Guo X; Cui Z
    Comput Biol Med; 2022 Nov; 150():106118. PubMed ID: 36166987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Dynamically Optimized SSVEP Brain-Computer Interface (BCI) Speller.
    Yin E; Zhou Z; Jiang J; Yu Y; Hu D
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1447-56. PubMed ID: 24801483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SSVEP-based Bremen-BCI interface--boosting information transfer rates.
    Volosyak I
    J Neural Eng; 2011 Jun; 8(3):036020. PubMed ID: 21555847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electric field encephalography for brain activity monitoring.
    Versek C; Frasca T; Zhou J; Chowdhury K; Sridhar S
    J Neural Eng; 2018 Aug; 15(4):046027. PubMed ID: 29749347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).
    Hwang HJ; Hwan Kim D; Han CH; Im CH
    Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dry and noncontact EEG sensors for mobile brain-computer interfaces.
    Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An SSVEP-BCI in Augmented Reality.
    Liu P; Ke Y; Du J; Liu W; Kong L; Wang N; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5548-5551. PubMed ID: 31947111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an "eyes-closed" brain-computer interface system for communication of patients with oculomotor impairment.
    Han CH; Hwang HJ; Lim JH; Im CH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2236-9. PubMed ID: 24110168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct information transfer rate optimisation for SSVEP-based BCI.
    Ingel A; Kuzovkin I; Vicente R
    J Neural Eng; 2019 Feb; 16(1):016016. PubMed ID: 30523959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.