These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26736760)

  • 1. Classification of unconscious like/dislike decisions: First results towards a novel application for BCI technology.
    Wriessnegger SC; Hackhofer D; Muller-Putz GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2331-4. PubMed ID: 26736760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust detection of event-related potentials in a user-voluntary short-term imagery task.
    Lee MH; Williamson J; Kee YJ; Fazli S; Lee SW
    PLoS One; 2019; 14(12):e0226236. PubMed ID: 31877161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature selection of EEG signals in neuromarketing.
    Al-Nafjan A
    PeerJ Comput Sci; 2022; 8():e944. PubMed ID: 35634118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Offline analysis of context contribution to ERP-based typing BCI performance.
    Orhan U; Erdogmus D; Roark B; Oken B; Fried-Oken M
    J Neural Eng; 2013 Dec; 10(6):066003. PubMed ID: 24099944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a holistic assessment of the user experience with hybrid BCIs.
    Lorenz R; Pascual J; Blankertz B; Vidaurre C
    J Neural Eng; 2014 Jun; 11(3):035007. PubMed ID: 24835132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards an architecture of a hybrid BCI based on SSVEP-BCI and passive-BCI.
    Cotrina A; Benevides A; Ferreira A; Bastos T; Castillo J; Menezes ML; Pereira C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1342-5. PubMed ID: 25570215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A survey of the dummy face and human face stimuli used in BCI paradigm.
    Chen L; Jin J; Zhang Y; Wang X; Cichocki A
    J Neurosci Methods; 2015 Jan; 239():18-27. PubMed ID: 25314905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. User-centered design in brain-computer interfaces-a case study.
    Schreuder M; Riccio A; Risetti M; Dähne S; Ramsay A; Williamson J; Mattia D; Tangermann M
    Artif Intell Med; 2013 Oct; 59(2):71-80. PubMed ID: 24076341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asynchronous Control of ERP-Based BCI Spellers Using Steady-State Visual Evoked Potentials Elicited by Peripheral Stimuli.
    Santamaria-Vazquez E; Martinez-Cagigal V; Gomez-Pilar J; Hornero R
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1883-1892. PubMed ID: 31403437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How stimulation speed affects Event-Related Potentials and BCI performance.
    Höhne J; Tangermann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1802-5. PubMed ID: 23366261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extremely Reduced Data Sets Indicate Optimal Stimulation Parameters for Classification in Brain-Computer Interfaces.
    Sosulski J; Tangermann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2256-2260. PubMed ID: 31946349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential.
    Brumberg JS; Nguyen A; Pitt KM; Lorenz SD
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):241-249. PubMed ID: 29385839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond maximum speed--a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI).
    Kaufmann T; Kübler A
    J Neural Eng; 2014 Oct; 11(5):056004. PubMed ID: 25080406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment.
    Zander TO; Jatzev S
    J Neural Eng; 2012 Feb; 9(1):016003. PubMed ID: 22156069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.
    Spuler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1087-90. PubMed ID: 26736454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attention-level transitory response: a novel hybrid BCI approach.
    Diez PF; Garcés Correa A; Orosco L; Laciar E; Mut V
    J Neural Eng; 2015 Oct; 12(5):056007. PubMed ID: 26268353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.