These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 26736788)

  • 1. Bipedal spring-damper-mass model reproduces external mechanical power of human walking.
    Etenzi E; Monaco V
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2446-9. PubMed ID: 26736788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.
    Jung CK; Park S
    J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compliant leg behaviour explains basic dynamics of walking and running.
    Geyer H; Seyfarth A; Blickhan R
    Proc Biol Sci; 2006 Nov; 273(1603):2861-7. PubMed ID: 17015312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking in circles: a modelling approach.
    Maus HM; Seyfarth A
    J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25056215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bipedal compliant walking model generates periodic gait cycles with realistic swing dynamics.
    Lim H; Park S
    J Biomech; 2019 Jun; 91():79-84. PubMed ID: 31153624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics of lower limbs during walking are emulated by springy walking model with a compliantly connected, off-centered curvy foot.
    Lim H; Park S
    J Biomech; 2018 Apr; 71():119-126. PubMed ID: 29456169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics and passive dynamics of the ankle in downhill walking.
    Holm JK; Contakos J; Lee SW; Jang J
    J Appl Biomech; 2010 Nov; 26(4):379-89. PubMed ID: 21245497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hip torque during step-to-step transition on center-of-mass dynamics during human walking examined with numerical simulation.
    Hao M; Chen K; Fu C
    J Biomech; 2019 Jun; 90():33-39. PubMed ID: 31047697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cost of leg forces in bipedal locomotion: a simple optimization study.
    Rebula JR; Kuo AD
    PLoS One; 2015; 10(2):e0117384. PubMed ID: 25707000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic coupling of limb joints enables faster bipedal walking.
    Dean JC; Kuo AD
    J R Soc Interface; 2009 Jun; 6(35):561-73. PubMed ID: 18957360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive locomotion: Investigation and modeling of physically-paired humans while walking.
    Lanini J; Duburcq A; Razavi H; Le Goff CG; Ijspeert AJ
    PLoS One; 2017; 12(9):e0179989. PubMed ID: 28877161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple bipedal model for studying control of gait termination.
    Suzuki Y; Geyer H
    Bioinspir Biomim; 2018 Mar; 13(3):036005. PubMed ID: 29582777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An actuated dissipative spring-mass walking model: Predicting human-like ground reaction forces and the effects of model parameters.
    Li T; Li Q; Liu T
    J Biomech; 2019 Jun; 90():58-64. PubMed ID: 31078280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does it pay to have a damper in a powered ankle prosthesis? A power-energy perspective.
    Eslamy M; Grimmer M; Rinderknecht S; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650362. PubMed ID: 24187181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forward dynamic simulation of bipedal walking in the Japanese macaque: investigation of causal relationships among limb kinematics, speed, and energetics of bipedal locomotion in a nonhuman primate.
    Ogihara N; Aoi S; Sugimoto Y; Tsuchiya K; Nakatsukasa M
    Am J Phys Anthropol; 2011 Aug; 145(4):568-80. PubMed ID: 21590751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable walking with asymmetric legs.
    Merker A; Rummel J; Seyfarth A
    Bioinspir Biomim; 2011 Dec; 6(4):045004. PubMed ID: 22126858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Computer modeling and simulation of bipedal walking in the Japanese macaque].
    Ogihara N
    Brain Nerve; 2010 Nov; 62(11):1183-92. PubMed ID: 21068455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg stiffness increases with speed to modulate gait frequency and propulsion energy.
    Kim S; Park S
    J Biomech; 2011 Apr; 44(7):1253-8. PubMed ID: 21396646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanical model of the human ankle in the transverse plane during straight walking: implications for prosthetic design.
    Glaister BC; Schoen JA; Orendurff MS; Klute GK
    J Biomech Eng; 2009 Mar; 131(3):034501. PubMed ID: 19154072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.