These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26736788)

  • 21. Center of mass mechanics of chimpanzee bipedal walking.
    Demes B; Thompson NE; O'Neill MC; Umberger BR
    Am J Phys Anthropol; 2015 Mar; 156(3):422-33. PubMed ID: 25407636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of gait sensitivity norm as a predictor of risk of falling during walking in a neuromusculoskeletal model.
    Thangal SN; Talaty M; Balasubramanian S
    Med Eng Phys; 2013 Oct; 35(10):1483-9. PubMed ID: 23669370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A model of bipedal locomotion on compliant legs.
    Alexander RM
    Philos Trans R Soc Lond B Biol Sci; 1992 Oct; 338(1284):189-98. PubMed ID: 1360684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical analysis of the state of balance in bipedal walking.
    Firmani F; Park EJ
    J Biomech Eng; 2013 Apr; 135(4):041003. PubMed ID: 24231898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical analysis of the development of human bipedal walking by a neuro-musculo-skeletal model.
    Yamazaki N; Hase K; Ogihara N; Hayamizu N
    Folia Primatol (Basel); 1996; 66(1-4):253-71. PubMed ID: 8953764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resonance-based oscillations could describe human gait mechanics under various loading conditions.
    Lee M; Kim S; Park S
    J Biomech; 2014 Jan; 47(1):319-22. PubMed ID: 24210476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanics of dog walking compared with a passive, stiff-limbed, 4-bar linkage model, and their collisional implications.
    Usherwood JR; Williams SB; Wilson AM
    J Exp Biol; 2007 Feb; 210(Pt 3):533-40. PubMed ID: 17234623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New method of three-dimensional analysis of bipedal locomotion for the study of displacements of the body and body-parts centers of mass in man and non-human primates: evolutionary framework.
    Tardieu C; Aurengo A; Tardieu B
    Am J Phys Anthropol; 1993 Apr; 90(4):455-76. PubMed ID: 8476004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical energy in toddler gait. A trade-off between economy and stability?
    Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D
    J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models.
    Aoi S; Yamashita T; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061909. PubMed ID: 21797405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bipedal walking and running with spring-like biarticular muscles.
    Iida F; Rummel J; Seyfarth A
    J Biomech; 2008; 41(3):656-67. PubMed ID: 17996242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking.
    Sun S; Huang Y; Wang Q
    J Theor Biol; 2016 Jan; 388():108-18. PubMed ID: 26519906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generalization of a muscle-reflex control model to 3D walking.
    Song S; Geyer H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7463-6. PubMed ID: 24111471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Locomotion in bonobos (Pan paniscus): differences and similarities between bipedal and quadrupedal terrestrial walking, and a comparison with other locomotor modes.
    D'Août K; Vereecke E; Schoonaert K; De Clercq D; Van Elsacker L; Aerts P
    J Anat; 2004 May; 204(5):353-61. PubMed ID: 15198700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robust and efficient walking with spring-like legs.
    Rummel J; Blum Y; Seyfarth A
    Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstruction of human swing leg motion with passive biarticular muscle models.
    Ahmad Sharbafi M; Mohammadi Nejad Rashty A; Rode C; Seyfarth A
    Hum Mov Sci; 2017 Apr; 52():96-107. PubMed ID: 28182970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable bipedal walking with a swing-leg protraction strategy.
    Bhounsule PA; Zamani A
    J Biomech; 2017 Jan; 51():123-127. PubMed ID: 27939172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of unmeasured ground reaction force data based on the oscillatory characteristics of the center of mass during human walking.
    Ryu HX; Park S
    J Biomech; 2018 Apr; 71():135-143. PubMed ID: 29525240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Minimizing center of mass vertical movement increases metabolic cost in walking.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2005 Dec; 99(6):2099-107. PubMed ID: 16051716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.