These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26736812)

  • 1. An automatic method for the enrichment of DICOM metadata using biomedical ontologies.
    Perez W; Tello A; Saquicela V; Vidal ME; La Cruz A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2551-4. PubMed ID: 26736812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New concepts for building vocabulary for cell image ontologies.
    Plant AL; Elliott JT; Bhat TN
    BMC Bioinformatics; 2011 Dec; 12():487. PubMed ID: 22188658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIFR annotator: ontology-based semantic annotation of French biomedical text and clinical notes.
    Tchechmedjiev A; Abdaoui A; Emonet V; Zevio S; Jonquet C
    BMC Bioinformatics; 2018 Nov; 19(1):405. PubMed ID: 30400805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a view-oriented approach for aligning RDF-based biomedical repositories.
    Anguita A; García-Remesal M; de la Iglesia D; Graf N; Maojo V
    Methods Inf Med; 2015; 54(1):50-5. PubMed ID: 24777240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCALEUS-FD: A FAIR Data Tool for Biomedical Applications.
    Pereira A; Lopes RP; Oliveira JL
    Biomed Res Int; 2020; 2020():3041498. PubMed ID: 32908882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Weighted Automatic Import of Standardized Ontologies into the Content Management System Drupal.
    Beger C; Uciteli A; Herre H
    Stud Health Technol Inform; 2017; 243():170-174. PubMed ID: 28883194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognizing lexical and semantic change patterns in evolving life science ontologies to inform mapping adaptation.
    Dos Reis JC; Dinh D; Da Silveira M; Pruski C; Reynaud-Delaître C
    Artif Intell Med; 2015 Mar; 63(3):153-70. PubMed ID: 25530449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The semantic measures library and toolkit: fast computation of semantic similarity and relatedness using biomedical ontologies.
    Harispe S; Ranwez S; Janaqi S; Montmain J
    Bioinformatics; 2014 Mar; 30(5):740-2. PubMed ID: 24108186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UFO: A tool for unifying biomedical ontology-based semantic similarity calculation, enrichment analysis and visualization.
    Le DH
    PLoS One; 2020; 15(7):e0235670. PubMed ID: 32645039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating semantic similarity between Chinese biomedical terms through multiple ontologies with score normalization: An initial study.
    Ning W; Yu M; Kong D
    J Biomed Inform; 2016 Dec; 64():273-287. PubMed ID: 27810481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing semantic interoperability of biomedical metadata registries using extended semantic relationships.
    Park YR; Yoon YJ; Kim HH; Kim JH
    Stud Health Technol Inform; 2013; 192():618-21. PubMed ID: 23920630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontologies in the New Computational Age of Radiology: RadLex for Semantics and Interoperability in Imaging Workflows.
    Chepelev LL; Kwan D; Kahn CE; Filice RW; Wang KC
    Radiographics; 2023 Mar; 43(3):e220098. PubMed ID: 36757882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews.
    Ji X; Ritter A; Yen PY
    J Biomed Inform; 2017 May; 69():33-42. PubMed ID: 28302519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a systematic conflict resolution framework for ontologies.
    Keet CM; Grütter R
    J Biomed Semantics; 2021 Aug; 12(1):15. PubMed ID: 34372934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple ontologies in action: composite annotations for biosimulation models.
    Gennari JH; Neal ML; Galdzicki M; Cook DL
    J Biomed Inform; 2011 Feb; 44(1):146-54. PubMed ID: 20601121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The BMS-LM ontology for biomedical data reporting throughout the lifecycle of a research study: From data model to ontology.
    Raboudi A; Allanic M; Balvay D; Hervé PY; Viel T; Yoganathan T; Certain A; Hilbey J; Charlet J; Durupt A; Boutinaud P; Eynard B; Tavitian B
    J Biomed Inform; 2022 Mar; 127():104007. PubMed ID: 35124236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knowledge Discovery from Biomedical Ontologies in Cross Domains.
    Shen F; Lee Y
    PLoS One; 2016; 11(8):e0160005. PubMed ID: 27548262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomy and the type concept in biology show that ontologies must be adapted to the diagnostic needs of research.
    Vogt L; Mikó I; Bartolomaeus T
    J Biomed Semantics; 2022 Jun; 13(1):18. PubMed ID: 35761389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semantic prerequisites for data sharing in a biomedical research network.
    Ganzinger M; Knaup P
    Stud Health Technol Inform; 2013; 192():938. PubMed ID: 23920712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.