These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26736844)

  • 1. Electrically induced energy transmission used for implantable medical devices deep inside the body: Measurement of received voltage in consideration of biological effect.
    Shiba K
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2681-4. PubMed ID: 26736844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capacitive-coupling-based information transmission system for implantable devices: investigation of transmission mechanism.
    Shiba K; Enoki N
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):674-81. PubMed ID: 24232628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wireless batteryless deep-seated implantable ultrasonic pulser-receiver powered by magnetic coupling.
    Tang SC; Jolesz FA; Clement GT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1211-21. PubMed ID: 21693403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal position of the transmitter coil for wireless power transfer to the implantable device.
    Jinghui Jian ; Stanaćević M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6549-52. PubMed ID: 25571496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wireless batteryless implantable radiofrequency lesioning device powered by intermediate-range segmented coil transmitter.
    Sai Chun Tang ; McDannold NJ; Vaninetti M
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1966-1969. PubMed ID: 29060279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to pass information and deliver energy to a network of implantable devices within the human body.
    Sun M; Hackworth SA; Tang Z; Gilbert G; Cardin S; Sclabassi RJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5286-9. PubMed ID: 18003200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microbial fuel cell as power supply for implantable medical devices.
    Han Y; Yu C; Liu H
    Biosens Bioelectron; 2010 May; 25(9):2156-60. PubMed ID: 20299200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.
    Sahara G; Hijikata W; Tomioka K; Shinshi T
    Proc Inst Mech Eng H; 2016 Jun; 230(6):569-78. PubMed ID: 27006422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators.
    Ersen A; Sahin M
    J Biomed Opt; 2017 May; 22(5):55005. PubMed ID: 28500857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Directional Property of Human-Body Communication Channel for Implantable Device Application.
    Jung J; Choi D; Kim DE; Li M
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design optimization of contactless generator for implantable energy harvesting system utilizing electrically-stimulated muscle.
    Mochida T; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():358-363. PubMed ID: 31945915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leakage of energy to the body surface during defibrillation shock by an implantable cardioverter-defibrillator (ICD) system--experimental evaluation during defibrillation shocks through the right ventricular lead and the subcutaneous active-can in canines.
    Niwano S; Kitano Y; Moriguchi M; Yoshizawa N; Kashiwa T; Suyama M; Toyoshima T; Izumi T
    Jpn Circ J; 2001 Mar; 65(3):219-25. PubMed ID: 11266198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [An implantable micro-device using wireless power transmission for measuring aortic aneurysm sac pressure].
    Guo X; Ge B; Wang W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):724-9. PubMed ID: 24059044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Body-Integrated Self-Powered System for Wearable and Implantable Applications.
    Shi B; Liu Z; Zheng Q; Meng J; Ouyang H; Zou Y; Jiang D; Qu X; Yu M; Zhao L; Fan Y; Wang ZL; Li Z
    ACS Nano; 2019 May; 13(5):6017-6024. PubMed ID: 31083973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary experimental study on safety of deep brain stimulation in RF electromagnetic field.
    Jun X; Luming L; Hongwei H
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3091-4. PubMed ID: 19963563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 10.5 cm ultrasound link for deep implanted medical devices.
    Mazzilli F; Lafon C; Dehollain C
    IEEE Trans Biomed Circuits Syst; 2014 Oct; 8(5):738-50. PubMed ID: 25388881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary side control of load voltage for transcutaneous energy transmission.
    Fu Y; Hu L; Ruan X; Fu X
    J Artif Organs; 2016 Mar; 19(1):14-20. PubMed ID: 26432434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Safety of Human Body Communication.
    Maity S; Nath M; Bhattacharya G; Chatterjee B; Sen S
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3392-3402. PubMed ID: 32305887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic Analysis, Characterization and Discussion of Inductive Transmission Parameters for Titanium Based Housing Materials in Active Medical Implantable Devices.
    Gruenwald W; Bhattacharrya M; Jansen D; Reindl L
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30366401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetic and thermal effects of IR-UWB wireless implant systems on the human head.
    Thotahewa KM; Redouté JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5179-82. PubMed ID: 24110902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.