BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 26736846)

  • 1. A 4.5 μW Miniaturized 3-Channel Wireless Intra-Cardiac Acquisition System.
    Rezaeiyan Y; Koolivand Y; Zamani M; Shoaei O; Akbari M; Moradi F; Tang KT
    IEEE Trans Biomed Circuits Syst; 2023 Oct; 17(5):1097-1110. PubMed ID: 37436854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wirelessly Powered and Bi-Directional Data Communication System With Adaptive Conversion Chain for Multisite Biomedical Implants Over Single Inductive Link.
    Karimi MJ; Jin M; Zhou Y; Dehollain C; Schmid A
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):636-647. PubMed ID: 38285577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Self-Adaptive Dual-ILRO Clock-Recovery Technique for Two-Tone Battery-Free Crystal-Free Neural-Recording SoC.
    Chang Z; Yang C; Zhang Y; Li Z; Gao H; Luo Y; Xu K; Pan G; Zhao B
    IEEE Trans Biomed Circuits Syst; 2024 Feb; 18(1):39-50. PubMed ID: 37549076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fully Integrated Wireless SoC for Motor Function Recovery After Spinal Cord Injury.
    Lo YK; Kuan YC; Culaclii S; Kim B; Wang PM; Chang CW; Massachi JA; Zhu M; Chen K; Gad P; Edgerton VR; Liu W
    IEEE Trans Biomed Circuits Syst; 2017 Jun; 11(3):497-509. PubMed ID: 28489550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Trimodal Wireless Implantable Neural Interface System-on-Chip.
    Jia Y; Guler U; Lai YP; Gong Y; Weber A; Li W; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1207-1217. PubMed ID: 33180731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device.
    Jia Y; Mirbozorgi SA; Lee B; Khan W; Madi F; Inan OT; Weber A; Li W; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):608-618. PubMed ID: 31135371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeing the Animal Model: A Modular, Wirelessly Powered, Implantable Electronic Platform.
    Greene JJ; Gorelik P; Mazor O; Guarin DL; Malk R; Hadlock T
    Plast Reconstr Surg; 2024 Mar; 153(3):568e-572e. PubMed ID: 37184506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-channel Wireless Implantable Brain-Computer Interface System.
    Lin C; Han C; Mao J; Yu S; Zhang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optic Nerve Stimulation System with Adaptive Wireless Powering and Data Telemetry.
    Li X; Lu Y; Meng X; Tsui CY; Ki WH
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency Modulated Parametric Oscillation for Antenna Powered Wireless Transmission of Voltage Sensing Signals.
    Qian W; Qian C
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1783-1791. PubMed ID: 31714233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implant-to-implant wireless networking with metamaterial textiles.
    Tian X; Zeng Q; Kurt SA; Li RR; Nguyen DT; Xiong Z; Li Z; Yang X; Xiao X; Wu C; Tee BCK; Nikolayev D; Charles CJ; Ho JS
    Nat Commun; 2023 Jul; 14(1):4335. PubMed ID: 37468458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniaturized Wirelessly Powered and Controlled Implants for Multisite Stimulation.
    Habibagahi I; Jang J; Babakhani A
    IEEE Trans Microw Theory Tech; 2023 May; 71(5):1911-1922. PubMed ID: 38645708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Wireless Implant for Gastrointestinal Motility Disorders.
    Lo YK; Wang PM; Dubrovsky G; Wu MD; Chan M; Dunn JCY; Liu W
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards scalable genomic data access.
    Hernaez M
    Nat Comput Sci; 2021 Jun; 1(6):391-392. PubMed ID: 38217235
    [No Abstract]   [Full Text] [Related]  

  • 15. An Implantable Inductive Near-Field Communication System with 64 Channels for Acquisition of Gastrointestinal Bioelectrical Activity.
    Javan-Khoshkholgh A; Farajidavar A
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31238521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Miniature Configurable Wireless System for Recording Gastric Electrophysiological Activity and Delivering High-Energy Electrical Stimulation.
    Wang R; Abukhalaf Z; Javan-Khoshkholgh A; Wang TH; Sathar S; Du P; Angeli TR; Cheng LK; O'Grady G; Paskaranandavadivel N; Farajidavar A
    IEEE J Emerg Sel Top Circuits Syst; 2018 Jun; 8(2):221-229. PubMed ID: 30687579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a highly-scalable wireless implantable system-on-a-chip for gastric electrophysiology.
    Ibrahim A; Farajidavar A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2689-92. PubMed ID: 26736846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.
    Lee SB; Lee B; Kiani M; Mahmoudi B; Gross R; Ghovanloo M
    IEEE Sens J; 2016 Jan; 16(2):475-484. PubMed ID: 27069422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Triple-Loop Inductive Power Transmission System for Biomedical Applications.
    Lee B; Kiani M; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):138-48. PubMed ID: 25667358
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.