These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26736880)

  • 1. Sleep spindle detection using deep learning: A validation study based on crowdsourcing.
    Dakun Tan ; Rui Zhao ; Jinbo Sun ; Wei Qin
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2828-31. PubMed ID: 26736880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Massive online data annotation, crowdsourcing to generate high quality sleep spindle annotations from EEG data.
    Lacourse K; Yetton B; Mednick S; Warby SC
    Sci Data; 2020 Jun; 7(1):190. PubMed ID: 32561751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods.
    Warby SC; Wendt SL; Welinder P; Munk EG; Carrillo O; Sorensen HB; Jennum P; Peppard PE; Perona P; Mignot E
    Nat Methods; 2014 Apr; 11(4):385-92. PubMed ID: 24562424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dexmedetomidine-induced deep sedation mimics non-rapid eye movement stage 3 sleep: large-scale validation using machine learning.
    Ramaswamy SM; Weerink MAS; Struys MMRF; Nagaraj SB
    Sleep; 2021 Feb; 44(2):. PubMed ID: 32860500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep spindle detection based on non-experts: A validation study.
    Zhao R; Sun J; Zhang X; Wu H; Liu P; Yang X; Qin W
    PLoS One; 2017; 12(5):e0177437. PubMed ID: 28493938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expert-level automated sleep staging of long-term scalp electroencephalography recordings using deep learning.
    Abou Jaoude M; Sun H; Pellerin KR; Pavlova M; Sarkis RA; Cash SS; Westover MB; Lam AD
    Sleep; 2020 Nov; 43(11):. PubMed ID: 32478820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sleep spindle detection algorithm that emulates human expert spindle scoring.
    Lacourse K; Delfrate J; Beaudry J; Peppard P; Warby SC
    J Neurosci Methods; 2019 Mar; 316():3-11. PubMed ID: 30107208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks.
    Chai R; Ling SH; San PP; Naik GR; Nguyen TN; Tran Y; Craig A; Nguyen HT
    Front Neurosci; 2017; 11():103. PubMed ID: 28326009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A robust two-stage sleep spindle detection approach using single-channel EEG.
    Jiang D; Ma Y; Wang Y
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33326950
    [No Abstract]   [Full Text] [Related]  

  • 10. DOSED: A deep learning approach to detect multiple sleep micro-events in EEG signal.
    Chambon S; Thorey V; Arnal PJ; Mignot E; Gramfort A
    J Neurosci Methods; 2019 Jun; 321():64-78. PubMed ID: 30946878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep spindles and rapid eye movement sleep as predictors of next morning cognitive performance in healthy middle-aged and older participants.
    Lafortune M; Gagnon JF; Martin N; Latreille V; Dubé J; Bouchard M; Bastien C; Carrier J
    J Sleep Res; 2014 Apr; 23(2):159-67. PubMed ID: 24245769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the use of line length for automatic sleep spindle detection.
    Imtiaz SA; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5024-7. PubMed ID: 25571121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random Forest-based Algorithm for Sleep Spindle Detection in Infant EEG.
    Wei L; Ventura S; Lowery M; Ryan MA; Mathieson S; Boylan GB; Mooney C
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():58-61. PubMed ID: 33017930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research of electroencephalography representational emotion recognition based on deep belief networks].
    Yang H; Zhang J; Jiang X; Liu F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Apr; 35(2):182-190. PubMed ID: 29745522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpindleU-Net: An Adaptive U-Net Framework for Sleep Spindle Detection in Single-Channel EEG.
    You J; Jiang D; Ma Y; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1614-1623. PubMed ID: 34398759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization.
    Parekh A; Selesnick IW; Rapoport DM; Ayappa I
    J Neurosci Methods; 2015 Aug; 251():37-46. PubMed ID: 25956566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crowdsourcing for Machine Learning in Public Health Surveillance: Lessons Learned From Amazon Mechanical Turk.
    Shakeri Hossein Abad Z; Butler GP; Thompson W; Lee J
    J Med Internet Res; 2022 Jan; 24(1):e28749. PubMed ID: 35040794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Detection of Respiratory Effort Related Arousals With Deep Neural Networks From Polysomnographic Recordings.
    Wickramaratne SD; Mahmud MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():154-157. PubMed ID: 33017953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-expert and intra-expert reliability in sleep spindle scoring.
    Wendt SL; Welinder P; Sorensen HB; Peppard PE; Jennum P; Perona P; Mignot E; Warby SC
    Clin Neurophysiol; 2015 Aug; 126(8):1548-56. PubMed ID: 25434753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition.
    Cimtay Y; Ekmekcioglu E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.