These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26736959)

  • 1. Optimum Experimental Design applied to MEMS accelerometer calibration for 9-parameter auto-calibration model.
    Ye L; Su SW
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3145-8. PubMed ID: 26736959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Low-Cost Calibration Method for Low-Cost MEMS Accelerometers Based on 3D Printing.
    García JA; Lara E; Aguilar L
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromagnetometer calibration for accurate orientation estimation.
    Zhang ZQ; Yang GZ
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):553-60. PubMed ID: 25265625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A magnetometer-free indoor human localization based on loosely coupled IMU/UWB fusion.
    Zihajehzadeh S; Yoon PK; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3141-4. PubMed ID: 26736958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of capacitive MEMS accelerometer structure parameters for human body dynamics measurements.
    Benevicius V; Ostasevicius V; Gaidys R
    Sensors (Basel); 2013 Aug; 13(9):11184-95. PubMed ID: 23974151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of accelerometer orientation for activity recognition.
    Friedman A; Hajj Chehade N; Chien C; Pottie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2076-9. PubMed ID: 23366329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Evaluation of a Wearable Device for Sleep Quality Assessment.
    Kuo CE; Liu YC; Chang DW; Young CP; Shaw FZ; Liang SF
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1547-1557. PubMed ID: 28113301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and assembly of MEMS accelerometer-based heart monitoring device with simplified, one step placement.
    Tjulkins F; Nguyen AT; Andreassen E; Aasmundtveit K; Hoivik N; Hoff L; Halvorsen PS; Grymyr OJ; Imenes K
    J Med Eng Technol; 2015 Jan; 39(1):69-74. PubMed ID: 25429874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A statistical estimation framework for energy expenditure of physical activities from a wrist-worn accelerometer.
    Qiao Wang ; Lohit S; Toledo MJ; Buman MP; Turaga P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2631-2635. PubMed ID: 28268862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of calibration methods for accelerometers used in human motion analysis.
    Nez A; Fradet L; Laguillaumie P; Monnet T; Lacouture P
    Med Eng Phys; 2016 Nov; 38(11):1289-1299. PubMed ID: 27590920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SoM: a smart sensor for human activity monitoring and assisted healthy ageing.
    Naranjo-Hernández D; Roa LM; Reina-Tosina J; Estudillo-Valderrama MÁ
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3177-84. PubMed ID: 23086195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerometer assessment of physical activity in children: an update.
    Rowlands AV
    Pediatr Exerc Sci; 2007 Aug; 19(3):252-66. PubMed ID: 18019585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity recognition in planetary navigation field tests using classification algorithms applied to accelerometer data.
    Song W; Ade C; Broxterman R; Barstow T; Nelson T; Warren S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1586-9. PubMed ID: 23366208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards the development of a wearable Electrical Impedance Tomography system: A study about the suitability of a low power bioimpedance front-end.
    Menolotto M; Rossi S; Dario P; Della Torre L
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3133-6. PubMed ID: 26736956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter.
    Atrsaei A; Salarieh H; Alasty A
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of step length estimators from weareable accelerometer devices.
    Alvarez D; Gonzalez RC; Lopez A; Alvarez JC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5964-7. PubMed ID: 17946351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1138-47. PubMed ID: 24846651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-parametric Bayesian human motion recognition using a single MEMS tri-axial accelerometer.
    Ahmed ME; Song JB
    Sensors (Basel); 2012 Sep; 12(10):13185-211. PubMed ID: 23201992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.