These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26736960)

  • 21. Retained surgical sponges, needles and instruments.
    Hariharan D; Lobo DN
    Ann R Coll Surg Engl; 2013 Mar; 95(2):87-92. PubMed ID: 23484986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tumor localization using radio-frequency identification clip marker: experimental results of an ex vivo porcine model.
    Joo HY; Lee BE; Choi CI; Kim DH; Kim GH; Jeon TY; Kim DH; Ahn S
    Surg Endosc; 2019 May; 33(5):1441-1450. PubMed ID: 30238157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of radiofrequency device sensitivity for the detection of retained surgical sponges in patients with morbid obesity.
    Steelman VM; Alasagheirin MH
    Arch Surg; 2012 Oct; 147(10):955-60. PubMed ID: 23070411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Finger-Controlled Passive RFID Tag Design for Human-Machine Interaction.
    Liu Q; Li H; Yu YF; Zhao WS; Zhang S
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the Impact of Radio Frequency Identification Retained Surgical Instruments Tracking on Patient Safety: Literature Review.
    Schnock KO; Biggs B; Fladger A; Bates DW; Rozenblum R
    J Patient Saf; 2021 Aug; 17(5):e462-e468. PubMed ID: 28230583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Use of Radiofrequency Detection to Mitigate the Risk of Retained Surgical Sponges.
    Bardes JM; Inaba K
    Adv Surg; 2017 Sep; 51(1):219-227. PubMed ID: 28797342
    [No Abstract]   [Full Text] [Related]  

  • 27. An RFID-based on-lens sensor system for long-term IOP monitoring.
    Hsu SH; Chiou JC; Liao YT; Yang TS; Kuei CK; Wu TW; Huang YC
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7526-9. PubMed ID: 26738033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Innovation in surgery/operating room driven by Internet of Things on medical devices.
    Ushimaru Y; Takahashi T; Souma Y; Yanagimoto Y; Nagase H; Tanaka K; Miyazaki Y; Makino T; Kurokawa Y; Yamasaki M; Mori M; Doki Y; Nakajima K
    Surg Endosc; 2019 Oct; 33(10):3469-3477. PubMed ID: 30671666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An intelligent IoT emergency vehicle warning system using RFID and Wi-Fi technologies for emergency medical services.
    Lai YL; Chou YH; Chang LC
    Technol Health Care; 2018; 26(1):43-55. PubMed ID: 29060952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radiofrequency Identification Track for Tray Optimization: An Instrument Utilization Pilot Study in Surgical Oncology.
    Olivere LA; Hill IT; Thomas SM; Codd PJ; Rosenberger LH
    J Surg Res; 2021 Aug; 264():490-498. PubMed ID: 33857793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Applying radio-frequency identification (RFID) technology in transfusion medicine.
    Hohberger C; Davis R; Briggs L; Gutierrez A; Veeramani D
    Biologicals; 2012 May; 40(3):209-13. PubMed ID: 22079476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bar-coding surgical sponges to improve safety: a randomized controlled trial.
    Greenberg CC; Diaz-Flores R; Lipsitz SR; Regenbogen SE; Mulholland L; Mearn F; Rao S; Toidze T; Gawande AA
    Ann Surg; 2008 Apr; 247(4):612-6. PubMed ID: 18362623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensor-based surgical activity recognition in unconstrained environments.
    Meißner C; Meixensberger J; Pretschner A; Neumuth T
    Minim Invasive Ther Allied Technol; 2014 Aug; 23(4):198-205. PubMed ID: 24447106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Role of Radio Frequency Detection System Embedded Surgical Sponges in Preventing Retained Surgical Sponges: A Prospective Evaluation in Patients Undergoing Emergency Surgery.
    Inaba K; Okoye O; Aksoy H; Skiada D; Ault G; Sener S; Lam L; Benjamin E; Demetriades D
    Ann Surg; 2016 Oct; 264(4):599-604. PubMed ID: 27433911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Will RFID technology improve economic efficiency and patient safety?].
    Weiß J
    Dtsch Med Wochenschr; 2012 Nov; 137(46):2359. PubMed ID: 23281563
    [No Abstract]   [Full Text] [Related]  

  • 36. Design of a Miniaturized Meandered Line Antenna for UHF RFID Tags.
    Rokunuzzaman M; Islam MT; Rowe WS; Kibria S; Jit Singh M; Misran N
    PLoS One; 2016; 11(8):e0161293. PubMed ID: 27533470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time detection system for tumor localization during minimally invasive surgery for gastric and colon cancer removal: In vivo feasibility study in a swine model.
    Choi WJ; Moon JH; Min JS; Song YK; Lee SA; Ahn JW; Lee SH; Jung HC
    J Surg Oncol; 2018 Mar; 117(4):699-706. PubMed ID: 29193095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indoor localization using pedestrian dead reckoning updated with RFID-based fiducials.
    House S; Connell S; Milligan I; Austin D; Hayes TL; Chiang P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7598-601. PubMed ID: 22256097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of the service life of surgical instruments from the surgical instrument management system log using radio frequency identification.
    Yoshikawa T; Kimura E; Akama E; Nakao H; Yorozuya T; Ishihara K
    BMC Health Serv Res; 2019 Oct; 19(1):695. PubMed ID: 31615497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Application of RFID and Big data in Surgical Instruments Usage Analysis and Performance Tracking].
    Zhang J; Hu W; Lou Z
    Zhongguo Yi Liao Qi Xie Za Zhi; 2016 Nov; 40(6):410-2. PubMed ID: 29792600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.