These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26736971)

  • 1. A programmable and self-adjusting class E amplifier for efficient wireless powering of biomedical implants.
    Stoecklin S; Volk T; Yousaf A; Reindl L
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3193-6. PubMed ID: 26736971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptable Class-D Power Amplifier based Power Modulation and Data Transfer Technique for Biomedical Systems.
    Sarkar S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7562-7565. PubMed ID: 34892840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Optimization of Class-E Amplifier at Subnominal Condition in a Wireless Power Transfer System for Biomedical Implants.
    Liu H; Shao Q; Fang X
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):35-43. PubMed ID: 27323372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance matching wireless power transmission system for biomedical devices.
    Lum KY; Lindén M; Tan TS
    Stud Health Technol Inform; 2015; 211():225-32. PubMed ID: 25980873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximum achievable efficiency in near-field coupled power-transfer systems.
    Zargham M; Gulak PG
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):228-45. PubMed ID: 23853145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.
    Hannan MA; Hussein HA; Mutashar S; Samad SA; Hussain A
    Sensors (Basel); 2014 Dec; 14(12):23843-70. PubMed ID: 25615728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.
    Eom K; Jeong J; Lee TH; Lee SE; Jun SB; Kim SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1859-62. PubMed ID: 24110073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal frequency for powering millimeter-sized biomedical implants inside an inductively-powered homecage.
    Gougheri HS; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4804-4807. PubMed ID: 28269345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency optimization of class-D biomedical inductive wireless power transfer systems by means of frequency adjustment.
    Schormans M; Valente V; Demosthenous A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5473-6. PubMed ID: 26737530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless powering and data telemetry for biomedical implants.
    Young DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3221-4. PubMed ID: 19964060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors.
    Schormans M; Valente V; Demosthenous A
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.
    Gong C; Liu D; Miao Z; Wang W; Li M
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28604610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual-mode highly efficient class-E stimulator controlled by a low-Q class-E power amplifier through duty cycle.
    Chiu HW; Lu CC; Chuang JM; Lin WT; Lin CW; Kao MC; Lin ML
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):243-55. PubMed ID: 23853324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transcutaneous energy transmission system for artificial heart adapting to changing impedance.
    Fu Y; Hu L; Ruan X; Fu X
    Artif Organs; 2015 Apr; 39(4):378-87. PubMed ID: 25349072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 700mV low power low noise implantable neural recording system design.
    An G; Hutchens C; Rennaker RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6557-60. PubMed ID: 25571498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency wireless power delivery for medical implants using hybrid coils.
    Artan NS; Patel RC; Ning C; Chao HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1683-6. PubMed ID: 23366232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Single-Chip Full-Duplex High Speed Transceiver for Multi-Site Stimulating and Recording Neural Implants.
    Mirbozorgi SA; Bahrami H; Sawan M; Rusch LA; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):643-53. PubMed ID: 26469635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks.
    Miao Z; Liu D; Gong C
    IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1160-1170. PubMed ID: 28922125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo RF powering for advanced biological research.
    Zimmerman MD; Chaimanonart N; Young DJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2506-9. PubMed ID: 17945719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of ultra-low power biopotential amplifiers for biosignal acquisition applications.
    Zhang F; Holleman J; Otis BP
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):344-55. PubMed ID: 23853179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.