These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26736976)

  • 1. E. coli DH5α cell response to a sudden change in microfluidic chemical environment.
    Murugesan N; Panda T; Das SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3213-6. PubMed ID: 26736976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device.
    Murugesan N; Panda T; Das SK
    Biomed Microdevices; 2016 Aug; 18(4):53. PubMed ID: 27246690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed microfluidic screening of bacterial chemotaxis.
    Stehnach MR; Henshaw RJ; Floge SA; Guasto JS
    Elife; 2023 Jul; 12():. PubMed ID: 37486823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative chemical biosensing by bacterial chemotaxis in microfluidic chips.
    Roggo C; Picioreanu C; Richard X; Mazza C; van Lintel H; van der Meer JR
    Environ Microbiol; 2018 Jan; 20(1):241-258. PubMed ID: 29124848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Static Microfluidic Device for Investigating the Chemotaxis Response to Stable, Non-linear Gradients.
    Sule N; Penarete-Acosta D; Englert DL; Jayaraman A
    Methods Mol Biol; 2018; 1729():47-59. PubMed ID: 29429081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.
    Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A
    Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, Fabrication, and Testing of a Microfluidic Device for Thermotaxis and Chemotaxis Assays of Sperm.
    Ko YJ; Maeng JH; Hwang SY; Ahn Y
    SLAS Technol; 2018 Dec; 23(6):507-515. PubMed ID: 29949396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of chemical and thermal gradient on bacterial migration in a diffusive microfluidic device.
    Murugesan N; Dhar P; Panda T; Das SK
    Biomicrofluidics; 2017 Mar; 11(2):024108. PubMed ID: 28396712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial chemotaxis transverse to axial flow in a microfluidic channel.
    Lanning LM; Ford RM; Long T
    Biotechnol Bioeng; 2008 Jul; 100(4):653-63. PubMed ID: 18306417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Flow-free Gradient Generator Using a Self-Adhesive Thiol-acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System.
    Khan AH; Smith NM; Tullier MP; Roberts BS; Englert D; Pojman JA; Melvin AT
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26735-26747. PubMed ID: 34081856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidics for bacterial chemotaxis.
    Ahmed T; Shimizu TS; Stocker R
    Integr Biol (Camb); 2010 Nov; 2(11-12):604-29. PubMed ID: 20967322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Design, simulation and application of multichannel microfluidic chip for cell migration].
    Li H; Yang X; Wu X; Li Z; Hong C; Liu Y; Zhu L; Yang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):128-138. PubMed ID: 35231974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic devices for neutrophil chemotaxis studies.
    Zhao W; Zhao H; Li M; Huang C
    J Transl Med; 2020 Apr; 18(1):168. PubMed ID: 32293474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hydrogel-based microfluidic device for the studies of directed cell migration.
    Cheng SY; Heilman S; Wasserman M; Archer S; Shuler ML; Wu M
    Lab Chip; 2007 Jun; 7(6):763-9. PubMed ID: 17538719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in microfluidics-based chemotaxis studies.
    Wu J; Wu X; Lin F
    Lab Chip; 2013 Jul; 13(13):2484-99. PubMed ID: 23712326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli chemotaxis to competing stimuli in a microfluidic device with a constant gradient.
    Zhao X; Ford RM
    Biotechnol Bioeng; 2022 Sep; 119(9):2564-2573. PubMed ID: 35716141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients.
    Ahmed T; Shimizu TS; Stocker R
    Nano Lett; 2010 Sep; 10(9):3379-85. PubMed ID: 20669946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of bacterial chemotaxis in flow-based microfluidic devices.
    Englert DL; Manson MD; Jayaraman A
    Nat Protoc; 2010 May; 5(5):864-72. PubMed ID: 20431532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments.
    Chi PY; Spuul P; Tseng FG; Genot E; Chou CF; Taloni A
    Adv Exp Med Biol; 2019; 1146():79-103. PubMed ID: 31612455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.