These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26736978)

  • 1. Liquid density effect on burst frequency in centrifugal microfluidic platforms.
    Al-Faqheri W; Ibrahim F; Thio TH; Joseph K; Mohktar MS; Madou M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3221-4. PubMed ID: 26736978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study.
    Kazemzadeh A; Ganesan P; Ibrahim F; He S; Madou MJ
    PLoS One; 2013; 8(9):e73002. PubMed ID: 24069169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel liquid equilibrium valving on centrifugal microfluidic CD platform.
    Al-Faqheri W; Ibrahim F; Thio TH; Arof H; Madou M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5509-12. PubMed ID: 24110984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centrifugal microfluidics for biomedical applications.
    Gorkin R; Park J; Siegrist J; Amasia M; Lee BS; Park JM; Kim J; Kim H; Madou M; Cho YK
    Lab Chip; 2010 Jul; 10(14):1758-73. PubMed ID: 20512178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrifugal microfluidic platforms: advanced unit operations and applications.
    Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms.
    Thio TH; Soroori S; Ibrahim F; Al-Faqheri W; Soin N; Kulinsky L; Madou M
    Med Biol Eng Comput; 2013 May; 51(5):525-35. PubMed ID: 23292292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.
    Joseph K; Ibrahim F; Cho J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3217-20. PubMed ID: 26736977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Study of the Flow Control Strategy in a Wirelessly Charged Centrifugal Microfluidic Platform with Two Rotation Axes.
    Zhu Y; Chen Y; Meng X; Wang J; Lu Y; Xu Y; Cheng J
    Anal Chem; 2017 Sep; 89(17):9315-9321. PubMed ID: 28764326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical velocimetry on centrifugal microfluidic platforms.
    Abi-Samra K; Kim TH; Park DK; Kim N; Kim J; Kim H; Cho YK; Madou M
    Lab Chip; 2013 Aug; 13(16):3253-60. PubMed ID: 23787459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices.
    Zhang Z; Wang X; Luo Y; He S; Wang L
    Talanta; 2010 Jun; 81(4-5):1331-8. PubMed ID: 20441903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lab-on-CD microfluidic platform for rapid separation and mixing of plasma from whole blood.
    Kuo JN; Li BS
    Biomed Microdevices; 2014 Aug; 16(4):549-58. PubMed ID: 24647859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a passive liquid valve (PLV) utilizing a pressure equilibrium phenomenon on the centrifugal microfluidic platform.
    Al-Faqheri W; Ibrahim F; Thio TH; Bahari N; Arof H; Rothan HA; Yusof R; Madou M
    Sensors (Basel); 2015 Feb; 15(3):4658-76. PubMed ID: 25723143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic device based on a micro-hydrocyclone for particle-liquid separation.
    Bhardwaj P; Bagdi P; Sen AK
    Lab Chip; 2011 Dec; 11(23):4012-21. PubMed ID: 22028066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoassays in microfluidic systems.
    Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2010 Jun; 397(3):991-1007. PubMed ID: 20422163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection methods for centrifugal microfluidic platforms.
    Burger R; Amato L; Boisen A
    Biosens Bioelectron; 2016 Feb; 76():54-67. PubMed ID: 26166363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stem cells in microfluidics.
    van Noort D; Ong SM; Zhang C; Zhang S; Arooz T; Yu H
    Biotechnol Prog; 2009; 25(1):52-60. PubMed ID: 19205022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A power-free, parallel loading microfluidic reactor array for biochemical screening.
    Liu Y; Li G
    Sci Rep; 2018 Sep; 8(1):13664. PubMed ID: 30209328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform.
    Abi-Samra K; Hanson R; Madou M; Gorkin RA
    Lab Chip; 2011 Feb; 11(4):723-6. PubMed ID: 21103528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.