These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26736979)

  • 1. Red blood cells flows in rectilinear microfluidic chip.
    Anandan P; Ortiz D; Intaglietta M; Cabrales PJ; Bucolo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3225-8. PubMed ID: 26736979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry.
    Cairone F; Ortiz D; Cabrales PJ; Intaglietta M; Bucolo M
    Microvasc Res; 2018 Mar; 116():77-86. PubMed ID: 28918110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatio-temporal image analysis of particle streaks in micro-channels for low-cost electro-hydrodynamic flow characterization.
    Mahanti P; Taylor T; Cochran D; Hayes M; Weiss N; Jones P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4026-9. PubMed ID: 22255223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of machine learning for simulations of red blood cells in microfluidic devices.
    Bachratý H; Bachratá K; Chovanec M; Jančigová I; Smiešková M; Kovalčíková K
    BMC Bioinformatics; 2020 Mar; 21(Suppl 2):90. PubMed ID: 32164547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long range microfluidic shear device for cellular mechanotransduction studies.
    Dash SK; Verma RS; Das SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3209-12. PubMed ID: 26736975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Out-of-plane integration of a multimode optical fiber for single particle/cell detection at multiple points on a microfluidic device with applications to particle/cell counting, velocimetry, size discrimination and the analysis of single cell lysate injections.
    Sadeghi J; Patabadige DE; Culbertson AH; Latifi H; Culbertson CT
    Lab Chip; 2016 Dec; 17(1):145-155. PubMed ID: 27909706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled Microfluidic Environment for Dynamic Investigation of Red Blood Cell Aggregation.
    Mehri R; Mavriplis C; Fenech M
    J Vis Exp; 2015 Jun; (100):e52719. PubMed ID: 26065667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Microfluidics for Single Red Blood Cell Analysis.
    Grigorev GV; Lebedev AV; Wang X; Qian X; Maksimov GV; Lin L
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic chip for ICPMS sample introduction.
    Verboket PE; Borovinskaya O; Meyer N; Günther D; Dittrich PS
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25867751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-particle image velocimetry for velocity profile measurements of micro blood flows.
    Pitts KL; Fenech M
    J Vis Exp; 2013 Apr; (74):e50314. PubMed ID: 23644696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-sectional focusing of red blood cells in a constricted microfluidic channel.
    Abay A; Recktenwald SM; John T; Kaestner L; Wagner C
    Soft Matter; 2020 Jan; 16(2):534-543. PubMed ID: 31808773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplified fluid-structure coupled analysis of particle movement for designing of microfluidic cell sorter.
    Takagi Y; Kotev V; Yano K
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3229-32. PubMed ID: 26736980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconfigurable virtual electrowetting channels.
    Banerjee A; Kreit E; Liu Y; Heikenfeld J; Papautsky I
    Lab Chip; 2012 Feb; 12(4):758-64. PubMed ID: 22159496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic chip to interface porous microneedles for ISF collection.
    Takeuchi K; Takama N; Kim B; Sharma K; Paul O; Ruther P
    Biomed Microdevices; 2019 Mar; 21(1):28. PubMed ID: 30847695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature Gradients Drive Bulk Flow Within Microchannel Lined by Fluid-Fluid Interfaces.
    Amador GJ; Ren Z; Tabak AF; Alapan Y; Yasa O; Sitti M
    Small; 2019 May; 15(21):e1900472. PubMed ID: 30993841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphase flow experiment and simulation for cells-on-a-chip devices.
    Zhang M; Zheng A; Zheng ZC; Wang MZ
    Proc Inst Mech Eng H; 2019 Apr; 233(4):432-443. PubMed ID: 30929613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Platform with Precisely Controlled Hydrodynamic Parameters and Integrated Features for Generation of Microvortices to Accurately Form and Monitor Biofilms in Flow.
    Wen K; Gorbushina AA; Schwibbert K; Bell J
    ACS Biomater Sci Eng; 2024 Jul; 10(7):4626-4634. PubMed ID: 38904279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics.
    Tarn MD; Pamme N
    Methods Mol Biol; 2017; 1547():69-83. PubMed ID: 28044288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.