These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26737042)

  • 1. A wearable vibrotactile device for upper-limb bilateral motion training in stroke rehabilitation: A case study.
    Hung CT; Croft EA; Van der Loos HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3480-3. PubMed ID: 26737042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable vibrotactile stimulation for upper extremity rehabilitation in chronic stroke: clinical feasibility trial using the VTS Glove.
    Seim CE; Wolf SL; Starner TE
    J Neuroeng Rehabil; 2021 Jan; 18(1):14. PubMed ID: 33485371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigating Trunk Compensatory Movements in Post-Stroke Survivors through Visual Feedback during Robotic-Assisted Arm Reaching Exercises.
    Lee SH; Song WK
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.
    Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C
    Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of bilateral reaching on affected arm motor control in stroke--with and without loading on unaffected arm.
    Chang JJ; Tung WL; Wu WL; Su FC
    Disabil Rehabil; 2006 Dec; 28(24):1507-16. PubMed ID: 17178614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial.
    Barker RN; Brauer SG; Carson RG
    Stroke; 2008 Jun; 39(6):1800-7. PubMed ID: 18403742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of vibrotactile feedback on human learning of arm motions.
    Bark K; Hyman E; Tan F; Cha E; Jax SA; Buxbaum LJ; Kuchenbecker KJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):51-63. PubMed ID: 25486644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Short-Term Exposure to Supplemental Vibrotactile Kinesthetic Feedback on Goal-Directed Movements after Stroke: A Proof of Concept Case Series.
    Ballardini G; Krueger A; Giannoni P; Marinelli L; Casadio M; Scheidt RA
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does motivation matter in upper-limb rehabilitation after stroke? ArmeoSenso-Reward: study protocol for a randomized controlled trial.
    Widmer M; Held JP; Wittmann F; Lambercy O; Lutz K; Luft AR
    Trials; 2017 Dec; 18(1):580. PubMed ID: 29197412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the bases for a mixed reality stroke rehabilitation system, Part II: design of interactive feedback for upper limb rehabilitation.
    Lehrer N; Chen Y; Duff M; L Wolf S; Rikakis T
    J Neuroeng Rehabil; 2011 Sep; 8():54. PubMed ID: 21899779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wearable device for real-time motion error detection and vibrotactile instructional cuing.
    Lee BC; Chen S; Sienko KH
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):374-81. PubMed ID: 21511568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usability testing of gaming and social media applications for stroke and cerebral palsy upper limb rehabilitation.
    Valdés BA; Hilderman CG; Hung CT; Shirzad N; Van der Loos HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3602-5. PubMed ID: 25570770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke: a randomized controlled pilot study.
    Lin LF; Lin YJ; Lin ZH; Chuang LY; Hsu WC; Lin YH
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):388-396. PubMed ID: 28627862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofeedback vs. game scores for reducing trunk compensation after stroke: a randomized crossover trial.
    Valdés BA; Van der Loos HFM
    Top Stroke Rehabil; 2018 Mar; 25(2):96-113. PubMed ID: 29078743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis.
    Gauthier LV; Kane C; Borstad A; Strahl N; Uswatte G; Taub E; Morris D; Hall A; Arakelian M; Mark V
    BMC Neurol; 2017 Jun; 17(1):109. PubMed ID: 28595611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of position feedback during task-oriented upper-limb training after stroke: five-case pilot study.
    Molier BI; Prange GB; Krabben T; Stienen AH; van der Kooij H; Buurke JH; Jannink MJ; Hermens HJ
    J Rehabil Res Dev; 2011; 48(9):1109-18. PubMed ID: 22234715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rehabilitation via HOMe Based gaming exercise for the Upper-limb post Stroke (RHOMBUS): protocol of an intervention feasibility trial.
    Kilbride C; Scott DJM; Butcher T; Norris M; Ryan JM; Anokye N; Warland A; Baker K; Athanasiou DA; Singla-Buxarrais G; Nowicky A
    BMJ Open; 2018 Nov; 8(11):e026620. PubMed ID: 30467137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The feasibility, acceptability and preliminary efficacy of a low-cost, virtual-reality based, upper-limb stroke rehabilitation device: a mixed methods study.
    Warland A; Paraskevopoulos I; Tsekleves E; Ryan J; Nowicky A; Griscti J; Levings H; Kilbride C
    Disabil Rehabil; 2019 Sep; 41(18):2119-2134. PubMed ID: 29644897
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.