These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26737068)

  • 1. A tactile handle for cane use monitoring.
    Trujillo-León A; Ady R; Vidal-Verdú F; Bachta W
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3586-9. PubMed ID: 26737068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Gait Events with a FSR Based Cane Handle.
    Trujillo-León A; de Guzmán-Manzano A; Velázquez R; Vidal-Verdú F
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of long cane usage characteristics with the constant contact technique.
    Kim Y; Moncada-Torres A; Furrer J; Riesch M; Gassert R
    Appl Ergon; 2016 Jul; 55():216-225. PubMed ID: 26965194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weight-Bearing Estimation for Cane Users by Using Onboard Sensors.
    Ballesteros J; Tudela A; Caro-Romero JR; Urdiales C
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotion assistance through cane impulse.
    Bennett L; Murray MP; Murphy EF; Sowell TT
    Bull Prosthet Res; 1979; (10-31):38-47. PubMed ID: 454874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connected cane: Tactile button input for controlling gestures of iOS voiceover embedded in a white cane.
    Batterman JM; Martin VF; Yeung D; Walker BN
    Assist Technol; 2018; 30(2):91-99. PubMed ID: 28140766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multi-Sensor Cane Can Detect Changes in Gait Caused by Simulated Gait Abnormalities and Walking Terrains.
    Gill S; Seth N; Scheme E
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic Cane Controlled to Adapt Automatically to Its User Gait Characteristics.
    Trujillo-León A; Ady R; Reversat D; Bachta W
    Front Robot AI; 2020; 7():105. PubMed ID: 33501272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of tasks performed by stroke patients using a mobility assistive device.
    Hester T; Sherrill DM; Hamel M; Perreault K; Boissy P; Bonato P
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1501-4. PubMed ID: 17946896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robotic personal aids for mobility and monitoring for the elderly.
    Spenko M; Yu H; Dubowsky S
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):344-51. PubMed ID: 17009494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immediate effects of contralateral and ipsilateral cane use on normal adult gait.
    Aragaki DR; Nasmyth MC; Schultz SC; Nguyen GM; Yentes JM; Kao K; Perell K; Fang MA
    PM R; 2009 Mar; 1(3):208-13. PubMed ID: 19627896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial weight-bearing gait using conventional assistive devices.
    Youdas JW; Kotajarvi BJ; Padgett DJ; Kaufman KR
    Arch Phys Med Rehabil; 2005 Mar; 86(3):394-8. PubMed ID: 15759217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving obstacle detection by redesign of walking canes for blind persons.
    Schellingerhout R; Bongers RM; van Grinsven R; Smitsman AW; Van Galen GP
    Ergonomics; 2001 Apr; 44(5):513-26. PubMed ID: 11345494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambulatory assistive devices in orthopaedics: uses and modifications.
    Faruqui SR; Jaeblon T
    J Am Acad Orthop Surg; 2010 Jan; 18(1):41-50. PubMed ID: 20044491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, development, and clinical evaluation of the electronic mobility cane for vision rehabilitation.
    Bhatlawande S; Mahadevappa M; Mukherjee J; Biswas M; Das D; Gupta S
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1148-59. PubMed ID: 24860035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hip abductor control in walking following stroke -- the immediate effect of canes, taping and TheraTogs on gait.
    Maguire C; Sieben JM; Frank M; Romkes J
    Clin Rehabil; 2010 Jan; 24(1):37-45. PubMed ID: 19906767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of Automated Mobility Assessment of Older Adults via an Instrumented Cane.
    Wade JW; Boyles R; Flemming P; Sarkar A; de Riesthal M; Withrow TJ; Sarkar N
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1631-1638. PubMed ID: 30295633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of gait training with a cane and an augmented pressure sensor for enhancement of weight bearing over the affected lower limb in patients with stroke: a randomized controlled pilot study.
    Jung K; Kim Y; Cha Y; In TS; Hur YG; Chung Y
    Clin Rehabil; 2015 Feb; 29(2):135-42. PubMed ID: 25009199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy evaluation of a method to partition ground reaction force and center of pressure in cane-assisted gait using an instrumented cane with a triaxial force sensor.
    Kamono A; Kato M; Ogihara N
    Gait Posture; 2018 Feb; 60():141-147. PubMed ID: 29207289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity monitor accuracy in persons using canes.
    Wendland DM; Sprigle SH
    J Rehabil Res Dev; 2012; 49(8):1261-8. PubMed ID: 23341318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.