BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26737079)

  • 1. Magnetically driven microrobotic system for cancer cell manipulation.
    Lucarini G; Iacovacci V; Ricotti L; Comisso N; Dario P; Menciassi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3631-4. PubMed ID: 26737079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.
    Li H; Zhang J; Zhang N; Kershaw J; Wang L
    J Microencapsul; 2016 Dec; 33(8):712-717. PubMed ID: 27632892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network.
    Jeon S; Hoshiar AK; Kim K; Lee S; Kim E; Lee S; Kim JY; Nelson BJ; Cha HJ; Yi BJ; Choi H
    Soft Robot; 2019 Feb; 6(1):54-68. PubMed ID: 30312145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The optoelectronic microrobot: A versatile toolbox for micromanipulation.
    Zhang S; Scott EY; Singh J; Chen Y; Zhang Y; Elsayed M; Chamberlain MD; Shakiba N; Adams K; Yu S; Morshead CM; Zandstra PW; Wheeler AR
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14823-14828. PubMed ID: 31289234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation.
    Jager EW; Inganäs O; Lundström I
    Science; 2000 Jun; 288(5475):2335-8. PubMed ID: 10875911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance propulsion, control and tracking at 24 Hz of an untethered device in the carotid artery of a living animal: an important step in the development of medical micro- and nanorobots.
    Martel S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1475-8. PubMed ID: 18002245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart microrobots for mechanical cell characterization and cell convoying.
    Boukallel M; Gauthier M; Dauge M; Piat E; Abadie J
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1536-40. PubMed ID: 17694877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetically responsive microflaps reveal cell membrane boundaries from multiple angles.
    Teshima T; Onoe H; Aonuma H; Kuribayashi-Shigetomi K; Kamiya K; Tonooka T; Kanuka H; Takeuchi S
    Adv Mater; 2014 May; 26(18):2850-6. PubMed ID: 24677083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-automated selection of DNA aptamers using magnetic particle handling.
    Wochner A; Cech B; Menger M; Erdmann VA; Glökler J
    Biotechniques; 2007 Sep; 43(3):344, 346, 348 passim. PubMed ID: 17907577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations.
    Hagiwara M; Kawahara T; Yamanishi Y; Masuda T; Feng L; Arai F
    Lab Chip; 2011 Jun; 11(12):2049-54. PubMed ID: 21562668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation and planning of a magnetically actuated microrobot navigating in the arteries.
    Belharet K; Folio D; Ferreira A
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):994-1001. PubMed ID: 23269748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computer-assisted protocol for endovascular target interventions using a clinical MRI system for controlling untethered microdevices and future nanorobots.
    Martel S; Mathieu JB; Felfoul O; Chanu A; Aboussouan E; Tamaz S; Pouponneau P; Yahia L; Beaudoin G; Soulez G; Mankiewicz M
    Comput Aided Surg; 2008 Nov; 13(6):340-52. PubMed ID: 19031286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system.
    Mathieu JB; Beaudoin G; Martel S
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):292-9. PubMed ID: 16485758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper.
    Chung SE; Dong X; Sitti M
    Lab Chip; 2015 Apr; 15(7):1667-76. PubMed ID: 25714053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial bacterial flagella for micromanipulation.
    Zhang L; Peyer KE; Nelson BJ
    Lab Chip; 2010 Sep; 10(17):2203-15. PubMed ID: 20567752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, characterization and control of thermally-responsive and magnetically-actuated micro-grippers at the air-water interface.
    Ongaro F; Scheggi S; Ghosh A; Denasi A; Gracias DH; Misra S
    PLoS One; 2017; 12(12):e0187441. PubMed ID: 29236716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper.
    Giltinan J; Diller E; Sitti M
    Lab Chip; 2016 Nov; 16(22):4445-4457. PubMed ID: 27766322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput system for magnetic manipulation of cells, polymers, and biomaterials.
    Spero RC; Vicci L; Cribb J; Bober D; Swaminathan V; O'Brien ET; Rogers SL; Superfine R
    Rev Sci Instrum; 2008 Aug; 79(8):083707. PubMed ID: 19044357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyroelectric Adaptive Nanodispenser (PYRANA) microrobot for liquid delivery on a target.
    Vespini V; Coppola S; Grilli S; Paturzo M; Ferraro P
    Lab Chip; 2011 Sep; 11(18):3148-52. PubMed ID: 21811716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic steering of iron oxide microparticles using propulsion gradient coils in MRI.
    Mathieu JB; Martel S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():472-5. PubMed ID: 17945979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.