BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26737205)

  • 1. Empirical Mode Decomposition for slow wave extraction from electrogastrographical signals.
    Mika B; Komorowski D; Tkacz E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4138-41. PubMed ID: 26737205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of slow wave propagation in multichannel electrogastrography by using noise-assisted multivariate empirical mode decomposition and cross-covariance analysis.
    Mika B; Komorowski D; Tkacz E
    Comput Biol Med; 2018 Sep; 100():305-315. PubMed ID: 29397919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network.
    Wang ZS; Cheung JY; Chen JD
    Med Biol Eng Comput; 1999 Jan; 37(1):80-6. PubMed ID: 10396846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of gastric slow waves from electrogastrograms: combining independent component analysis and adaptive signal enhancement.
    Liang H
    Med Biol Eng Comput; 2005 Mar; 43(2):245-51. PubMed ID: 15865135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gastric slow wave rhythm identification using new approach based on noise-assisted multivariate empirical mode decomposition and Hilbert-Huang transform.
    Komorowski D; Mika B
    Neurogastroenterol Motil; 2021 Mar; 33(3):e13997. PubMed ID: 33043542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What can be measured from surface electrogastrography. Computer simulations.
    Liang J; Chen JD
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artifact reduction in electrogastrogram based on empirical mode decomposition method.
    Liang H; Lin Z; McCallum RW
    Med Biol Eng Comput; 2000 Jan; 38(1):35-41. PubMed ID: 10829388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive independent component analysis of multichannel electrogastrograms.
    Liang H
    Med Eng Phys; 2001 Mar; 23(2):91-7. PubMed ID: 11413061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrogastrography.
    Rossi Z; Forlini G; Fenderico P; Cipolla R; Nasoni S
    Eur Rev Med Pharmacol Sci; 2005; 9(5 Suppl 1):29-35. PubMed ID: 16457127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gastric myoelectrical activity in patients with gastric outlet obstruction and idiopathic gastroparesis.
    Brzana RJ; Koch KL; Bingaman S
    Am J Gastroenterol; 1998 Oct; 93(10):1803-9. PubMed ID: 9772035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of multichannel electrogastrography for noninvasive assessment of gastric myoelectrical activity in dogs.
    Koenig JB; Martin CE; Dobson H; Mintchev MP
    Am J Vet Res; 2009 Jan; 70(1):11-5. PubMed ID: 19119943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA; Irimia A; Sims JA; Gallucci MR; Palmer RL; Richards WO
    Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Combined Methodology to Eliminate Artifacts in Multichannel Electrogastrogram Based on Independent Component Analysis and Ensemble Empirical Mode Decomposition.
    Sengottuvel S; Khan PF; Mariyappa N; Patel R; Saipriya S; Gireesan K
    SLAS Technol; 2018 Jun; 23(3):269-280. PubMed ID: 29547700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is there a one-to-one correlation between gastric emptying of liquids and gastric myoelectrical or motor activity in dogs?
    Xu X; Wang Z; Hayes J; Chen JD
    Dig Dis Sci; 2002 Feb; 47(2):365-72. PubMed ID: 11858233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the slow wave of bowel myoelectrical surface recording by empirical mode decomposition.
    Ye Y; Garcia-Casado J; Martinez-de-Juan JL; Guardiola JL; Ponce JL
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6165-8. PubMed ID: 17945942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo experimental validation of detection of gastric slow waves using a flexible multichannel electrogastrography sensor linear array.
    Sukasem A; Calder S; Angeli-Gordon TR; Andrews CN; O'Grady G; Gharibans A; Du P
    Biomed Eng Online; 2022 Jun; 21(1):43. PubMed ID: 35761323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of gastric slow wave propagation from the cutaneous electrogastrogram.
    Chen JD; Zou X; Lin X; Ouyang S; Liang J
    Am J Physiol; 1999 Aug; 277(2):G424-30. PubMed ID: 10444457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-body vibration suppresses gastric motility in healthy men.
    Ishitake T; Kano M; Miyazaki Y; Ando H; Tsutsumi A; Matoba T
    Ind Health; 1998 Apr; 36(2):93-7. PubMed ID: 9583304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrogastrography in adults and children: the strength, pitfalls, and clinical significance of the cutaneous recording of the gastric electrical activity.
    Riezzo G; Russo F; Indrio F
    Biomed Res Int; 2013; 2013():282757. PubMed ID: 23762836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous wavelet analysis as an aid in the representation and interpretation of electrogastrographic signals.
    Qiao W; Sun HH; Chey WY; Lee KY
    Ann Biomed Eng; 1998; 26(6):1072-81. PubMed ID: 9846945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.