These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26737207)

  • 1. Fractals properties of EEG during event-related desynchronization of motor imagery.
    Nguyen NQ; Truong QD; Kondo T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4146-9. PubMed ID: 26737207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractal Dimension as a discriminative feature for high accuracy classification in motor imagery EEG-based brain-computer interface.
    Moaveninejad S; D'Onofrio V; Tecchio F; Ferracuti F; Iarlori S; Monteriù A; Porcaro C
    Comput Methods Programs Biomed; 2024 Feb; 244():107944. PubMed ID: 38064955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of fractal theory in analysis of human electroencephalographic signals.
    Paramanathan P; Uthayakumar R
    Comput Biol Med; 2008 Mar; 38(3):372-8. PubMed ID: 18234169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A classification method of different motor imagery tasks based on fractal features for brain-machine interface.
    Phothisonothai M; Nakagawa M
    J Integr Neurosci; 2009 Mar; 8(1):95-122. PubMed ID: 19412982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG signal classification method based on fractal features and neural network.
    Phothisonothai M; Nakagawa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3880-3. PubMed ID: 19163560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelet-based fractal features with active segment selection: application to single-trial EEG data.
    Hsu WY; Lin CC; Ju MS; Sun YN
    J Neurosci Methods; 2007 Jun; 163(1):145-60. PubMed ID: 17379316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of ictal and interictal EEG signals using fractal features.
    Wang Y; Zhou W; Yuan Q; Li X; Meng Q; Zhao X; Wang J
    Int J Neural Syst; 2013 Dec; 23(6):1350028. PubMed ID: 24156671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features.
    Hsu WY
    J Neurosci Methods; 2010 Jun; 189(2):295-302. PubMed ID: 20381529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexity-based classification of EEG signal in normal subjects and patients with epilepsy.
    Namazi H; Aghasian E; Ala TS
    Technol Health Care; 2020; 28(1):57-66. PubMed ID: 31104032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise estimation of human corticospinal excitability associated with the levels of motor imagery-related EEG desynchronization extracted by a locked-in amplifier algorithm.
    Takahashi K; Kato K; Mizuguchi N; Ushiba J
    J Neuroeng Rehabil; 2018 Nov; 15(1):93. PubMed ID: 30384845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG signal features extraction based on fractal dimension.
    Finotello F; Scarpa F; Zanon M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4154-7. PubMed ID: 26737209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FDI: A MATLAB tool for computing the fractal dimension index of sources reconstructed from EEG data.
    Ruiz de Miras J; Casali AG; Massimini M; Ibáñez-Molina AJ; Soriano MF; Iglesias-Parro S
    Comput Biol Med; 2024 Sep; 179():108871. PubMed ID: 39002315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor Imagery EEG Classification for Patients with Amyotrophic Lateral Sclerosis Using Fractal Dimension and Fisher's Criterion-Based Channel Selection.
    Liu YH; Huang S; Huang YD
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facing High EEG Signals Variability during Classification Using Fractal Dimension and Different Cutoff Frequencies.
    Salazar-Varas R; Vazquez RA
    Comput Intell Neurosci; 2019; 2019():9174307. PubMed ID: 31236108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of movement-related potentials using a fractal approach.
    Uşakli AB
    J Comput Neurosci; 2010 Jun; 28(3):595-603. PubMed ID: 20449765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG and FMRI coregistration to investigate the cortical oscillatory activities during finger movement.
    Formaggio E; Storti SF; Avesani M; Cerini R; Milanese F; Gasparini A; Acler M; Pozzi Mucelli R; Fiaschi A; Manganotti P
    Brain Topogr; 2008 Dec; 21(2):100-11. PubMed ID: 18648924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.
    Duann JR; Chiou JC
    PLoS One; 2016; 11(9):e0162546. PubMed ID: 27636359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of running fractal dimension for the analysis of changing patterns in electroencephalograms.
    Pradhan N; Dutt DN
    Comput Biol Med; 1993 Sep; 23(5):381-8. PubMed ID: 8222617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-trial time-frequency analysis of electrocortical signals: baseline correction and beyond.
    Hu L; Xiao P; Zhang ZG; Mouraux A; Iannetti GD
    Neuroimage; 2014 Jan; 84():876-87. PubMed ID: 24084069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.