These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26737230)

  • 1. Accelerating DRR generation using Fourier slice theorem on the GPU.
    Abdellah M; Eldeib A; Owis MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4238-41. PubMed ID: 26737230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient rendering of digitally reconstructed radiographs on heterogeneous computing architectures using central slice theorem.
    Abdellah M; Abdallah M; Alzanati M; Eldeib A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3957-3960. PubMed ID: 28269151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel generation of digitally reconstructed radiographs on heterogeneous multi-GPU workstations.
    Abdellah M; Abdelaziz A; Eslam Ali EM; Abdelaziz S; Sayed A; Owis MI; Eldeib A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3953-3956. PubMed ID: 28269150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast DRR generation for 2D to 3D registration on GPUs.
    Tornai GJ; Cserey G; Pappas I
    Med Phys; 2012 Aug; 39(8):4795-9. PubMed ID: 22894404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating reconstruction of reference digital tomosynthesis using graphics hardware.
    Yan H; Ren L; Godfrey DJ; Yin FF
    Med Phys; 2007 Oct; 34(10):3768-76. PubMed ID: 17985622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.
    Dorgham OM; Laycock SD; Fisher MH
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2594-603. PubMed ID: 22801484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A software tool of digital tomosynthesis application for patient positioning in radiotherapy.
    Yan H; Dai JR
    J Appl Clin Med Phys; 2016 Mar; 17(2):174-193. PubMed ID: 27074482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GPU acceleration for digitally reconstructed radiographs using bindless texture objects and CUDA/OpenGL interoperability.
    Abdellah M; Eldeib A; Owis MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4242-5. PubMed ID: 26737231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a GPU-based multithreaded software application to calculate digitally reconstructed radiographs for radiotherapy.
    Mori S; Kobayashi M; Kumagai M; Minohara S
    Radiol Phys Technol; 2009 Jan; 2(1):40-5. PubMed ID: 20821127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast generation of digitally reconstructed radiographs using attenuation fields with application to 2D-3D image registration.
    Russakoff DB; Rohlfing T; Mori K; Rueckert D; Ho A; Adler JR; Maurer CR
    IEEE Trans Med Imaging; 2005 Nov; 24(11):1441-54. PubMed ID: 16279081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time 6DoF pose recovery from X-ray images using library-based DRR and hybrid optimization.
    Miao S; Tuysuzoglu A; Wang ZJ; Liao R
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1211-20. PubMed ID: 27038967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction.
    Chou CY; Chuo YY; Hung Y; Wang W
    Med Phys; 2011 Jul; 38(7):4052-65. PubMed ID: 21859004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast DRR splat rendering using common consumer graphics hardware.
    Spoerk J; Bergmann H; Wanschitz F; Dong S; Birkfellner W
    Med Phys; 2007 Nov; 34(11):4302-8. PubMed ID: 18072495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology.
    Spoerk J; Gendrin C; Weber C; Figl M; Pawiro SA; Furtado H; Fabri D; Bloch C; Bergmann H; Gröller E; Birkfellner W
    Z Med Phys; 2012 Feb; 22(1):13-20. PubMed ID: 21782399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast reconstructed radiographs from octree-compressed volumetric data.
    Fisher M; Dorgham O; Laycock SD
    Int J Comput Assist Radiol Surg; 2013 Mar; 8(2):313-22. PubMed ID: 22821505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPU accelerating technique for rendering implicitly represented vasculatures.
    Hong Q; Wang B; Li Q; Li Y; Wu Q
    Biomed Mater Eng; 2014; 24(1):1351-7. PubMed ID: 24212031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing depth perception in translucent volumes.
    Kersten MA; Stewart AJ; Troje N; Ellis R
    IEEE Trans Vis Comput Graph; 2006; 12(5):1117-23. PubMed ID: 17080842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using synthetic CT for partial brain radiation therapy: Impact on image guidance.
    Morris ED; Price RG; Kim J; Schultz L; Siddiqui MS; Chetty I; Glide-Hurst C
    Pract Radiat Oncol; 2018; 8(5):342-350. PubMed ID: 29861348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synthesis of a new x-ray picture identical in projection to a previous picture using 3D Fourier techniques.
    Carlsson PE; Edholm PR; Danielsson PE
    Phys Med Biol; 1994 Mar; 39(3):597-608. PubMed ID: 15551601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A light field-based fast computation of digitally reconstructed radiographs].
    Liu P; Gao J; Lei XZ; Zhou LH
    Nan Fang Yi Ke Da Xue Xue Bao; 2007 Oct; 27(10):1537-9. PubMed ID: 17959534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.