These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26737347)

  • 1. Classification of finger vibrotactile input using scalp EEG.
    He Y; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4717-20. PubMed ID: 26737347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-based BCI system for decoding finger movements within the same hand.
    Alazrai R; Alwanni H; Daoud MI
    Neurosci Lett; 2019 Apr; 698():113-120. PubMed ID: 30630057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification.
    Garrett D; Peterson DA; Anderson CW; Thaut MH
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):141-4. PubMed ID: 12899257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalp electroencephalograms over ipsilateral sensorimotor cortex reflect contraction patterns of unilateral finger muscles.
    Iwama S; Tsuchimoto S; Hayashi M; Mizuguchi N; Ushiba J
    Neuroimage; 2020 Nov; 222():117249. PubMed ID: 32798684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update.
    Lotte F; Bougrain L; Cichocki A; Clerc M; Congedo M; Rakotomamonjy A; Yger F
    J Neural Eng; 2018 Jun; 15(3):031005. PubMed ID: 29488902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of EEG features in decoding individual finger movements from one hand.
    Xiao R; Ding L
    Comput Math Methods Med; 2013; 2013():243257. PubMed ID: 23710250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BCI Competition 2003--Data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG.
    Wang Y; Zhang Z; Li Y; Gao X; Gao S; Yang F
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1081-6. PubMed ID: 15188883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy.
    Combrisson E; Jerbi K
    J Neurosci Methods; 2015 Jul; 250():126-36. PubMed ID: 25596422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of finger pairs from one hand based on spectral features in human EEG.
    Xiao R; Ding L
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1263-6. PubMed ID: 25570195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Logistic-weighted regression improves decoding of finger flexion from electrocorticographic signals.
    Chen W; Liu X; Litt B
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2629-32. PubMed ID: 25570530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Channel-Projection Mixed-Scale Convolutional Neural Network for Motor Imagery EEG Decoding.
    Li Y; Zhang XR; Zhang B; Lei MY; Cui WG; Guo YZ
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1170-1180. PubMed ID: 31071048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncorrelated multiway discriminant analysis for motor imagery EEG classification.
    Liu Y; Zhao Q; Zhang L
    Int J Neural Syst; 2015 Jun; 25(4):1550013. PubMed ID: 25986750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding of intentional actions from scalp electroencephalography (EEG) in freely-behaving infants.
    Hernandez ZR; Cruz-Garza J; Tse T; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2115-8. PubMed ID: 25570402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hidden Markov model and support vector machine based decoding of finger movements using electrocorticography.
    Wissel T; Pfeiffer T; Frysch R; Knight RT; Chang EF; Hinrichs H; Rieger JW; Rose G
    J Neural Eng; 2013 Oct; 10(5):056020. PubMed ID: 24045504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design Principles and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition With Finger Based Dry Electrodes.
    Nathan V; Jafari R
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):631-40. PubMed ID: 26462239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Feasibility of Using an Ear-EEG to Develop an Endogenous Brain-Computer Interface.
    Choi SI; Han CH; Choi GY; Shin J; Song KS; Im CH; Hwang HJ
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30158505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting hand forces from scalp electroencephalography during isometric force production and object grasping.
    Paek AY; Gailey A; Parikh P; Santello M; Contreras-Vidal J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7570-3. PubMed ID: 26738044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.