BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26737350)

  • 1. Quantification and automatized adaptive detection of in vivo and in vitro neuronal bursts based on signal complexity.
    Kapucu FE; Mikkonen JE; Tanskanen JM; Hyttinen JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4729-32. PubMed ID: 26737350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multielectrode Arrays.
    Burley R; Harvey JRM
    Methods Mol Biol; 2021; 2188():109-132. PubMed ID: 33119849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on neural information detecting system measuring neuroelectricity in hippocampus in vivo and dopamine in vitro based on microelectrode array.
    Mixia Wang ; Shengwei Xu ; Nansen Lin ; Yilin Song ; Song Zhang ; Xinxia Cai
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4837-4840. PubMed ID: 28269353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Human Stem Cell-Derived Neuronal Cell Culturing and Analysis.
    Ylä-Outinen L; Tanskanen JMA; Kapucu FE; Hyysalo A; Hyttinen JAK; Narkilahti S
    Adv Neurobiol; 2019; 22():299-329. PubMed ID: 31073942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal network morphology and electrophysiologyof hippocampal neurons cultured on surface-treated multielectrode arrays.
    Soussou WV; Yoon GJ; Brinton RD; Berger TW
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1309-20. PubMed ID: 17605362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of a spike detection and classification algorithm aimed at implementation on hardware devices.
    Biffi E; Ghezzi D; Pedrocchi A; Ferrigno G
    Comput Intell Neurosci; 2010; 2010():659050. PubMed ID: 20300592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to measure the strength of multi-unit bursts of action potentials.
    Mulloney B
    J Neurosci Methods; 2005 Jul; 146(1):98-105. PubMed ID: 15935226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular potentials in low-density dissociated neuronal cultures.
    Claverol-Tinture E; Pine J
    J Neurosci Methods; 2002 May; 117(1):13-21. PubMed ID: 12084560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the complexity of spontaneous electrical signals in cultured neuronal networks using approximate entropy.
    Chen L; Luo W; Deng Y; Wang Z; Zeng S
    IEEE Trans Inf Technol Biomed; 2009 May; 13(3):405-10. PubMed ID: 19174358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint analysis of extracellular spike waveforms and neuronal network bursts.
    Kapucu FE; Mäkinen ME; Tanskanen JMA; Ylä-Outinen L; Narkilahti S; Hyttinen JAK
    J Neurosci Methods; 2016 Feb; 259():143-155. PubMed ID: 26675487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multisite electrophysiological recordings by self-assembled loose-patch-like junctions between cultured hippocampal neurons and mushroom-shaped microelectrodes.
    Shmoel N; Rabieh N; Ojovan SM; Erez H; Maydan E; Spira ME
    Sci Rep; 2016 Jun; 6():27110. PubMed ID: 27256971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays.
    Li Y; Zhou W; Li X; Zeng S; Liu M; Luo Q
    Biosens Bioelectron; 2007 Jun; 22(12):2976-82. PubMed ID: 17240134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices.
    Haas HL; Jefferys JG
    J Physiol; 1984 Sep; 354():185-201. PubMed ID: 6481633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays.
    Krause G; Lehmann S; Lehmann M; Freund I; Schreiber E; Baumann W
    Biosens Bioelectron; 2006 Jan; 21(7):1272-82. PubMed ID: 16006112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On electrophysiological signal complexity during biological neuronal network development and maturation.
    Kapucu FE; Valkki I; Christophe F; Tanskanen JMA; Johansson J; Mikkonen T; Hyttinen JAK
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3333-3338. PubMed ID: 29060611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the in vitro propagation of epileptiform electrophysiological activity in organotypic hippocampal slice cultures coupled to 3D microelectrode arrays.
    Pisciotta M; Morgavi G; Jahnsen H
    Brain Res; 2010 Oct; 1358():46-53. PubMed ID: 20713026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultured neurons coupled to microelectrode arrays: circuit models, simulations and experimental data.
    Martinoia S; Massobrio P; Bove M; Massobrio G
    IEEE Trans Biomed Eng; 2004 May; 51(5):859-64. PubMed ID: 15132514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.
    Mari JF; Saito JH; Neves AF; Lotufo CM; Destro-Filho JB; Nicoletti Mdo C
    Int J Neural Syst; 2015 Dec; 25(8):1550033. PubMed ID: 26510475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.