BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26737421)

  • 1. Early detection of sit-to-stand transitions in a lower limb orthosis.
    Bell J; Xiangrong Shen ; Sazonov E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5028-31. PubMed ID: 26737421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for early detection of the initiation of sit-to-stand posture transitions.
    Doulah A; Shen X; Sazonov E
    Physiol Meas; 2016 Apr; 37(4):515-29. PubMed ID: 26963478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early Detection of the Initiation of Sit-to-Stand Posture Transitions Using Orthosis-Mounted Sensors.
    Doulah A; Shen X; Sazonov E
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated stand-up and sit-down detection for robot-assisted body-weight support training with the FLOAT.
    Bannwart M; Emst D; Easthope C; Bolliger M; Rauter G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():412-417. PubMed ID: 28813854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fuzzy controller for lower limb exoskeletons during sit-to-stand and stand-to-sit movement using wearable sensors.
    Reza SM; Ahmad N; Choudhury IA; Ghazilla RA
    Sensors (Basel); 2014 Mar; 14(3):4342-63. PubMed ID: 24599193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.
    Mazumder O; Kundu AS; Lenka PK; Bhaumik S
    Gait Posture; 2016 Oct; 50():53-59. PubMed ID: 27585182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Weight-Bearing Symmetry for Transfemoral Amputees During Standing Up and Sitting Down With a Powered Knee-Ankle Prosthesis.
    Simon AM; Fey NP; Ingraham KA; Finucane SB; Halsne EG; Hargrove LJ
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1100-6. PubMed ID: 26686876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sliding and lower limb mechanics during sit-stand-sit transitions with a standing wheelchair.
    Yang YS; Chen MD; Fang WC; Chang JJ; Kuo CC
    Biomed Res Int; 2014; 2014():236486. PubMed ID: 25105120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. User-Independent Intent Recognition for Lower Limb Prostheses Using Depth Sensing.
    Massalin Y; Abdrakhmanova M; Varol HA
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1759-1770. PubMed ID: 29989950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postural transitions detection and characterization in healthy and patient populations using a single waist sensor.
    Atrsaei A; Dadashi F; Hansen C; Warmerdam E; Mariani B; Maetzler W; Aminian K
    J Neuroeng Rehabil; 2020 Jun; 17(1):70. PubMed ID: 32493496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contribution of handgrip assistance on lower limb joint moments during sit-to-stand and stand-to-sit: a preliminary comparative study.
    Saadé A; Pudlo P; Lempereur M; Rémy-Néris O
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():102-3. PubMed ID: 25074185
    [No Abstract]   [Full Text] [Related]  

  • 13. Quantification of lower extremity physical exposures in various combinations of sit/stand time duration associated with sit-stand workstation.
    Pei H; Yu S; Babski-Reeves K; Chu J; Qu M; Tian B; Li W
    Med Pr; 2017 May; 68(3):315-327. PubMed ID: 28512361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of sit-to-stand and stand-to-sit transitions using a single inertial sensor.
    Rodríguez-Martín D; Samà A; Pérez-López C; Català A
    Stud Health Technol Inform; 2012; 177():113-7. PubMed ID: 22942040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of seat-off and seat-on in repeated sit-to-stand movements using a single-body-fixed sensor.
    van Lummel RC; Ainsworth E; Hausdorff JM; Lindemann U; Beek PJ; van Dieën JH
    Physiol Meas; 2012 Nov; 33(11):1855-67. PubMed ID: 23111005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postural Transitions during Activities of Daily Living Could Identify Frailty Status: Application of Wearable Technology to Identify Frailty during Unsupervised Condition.
    Parvaneh S; Mohler J; Toosizadeh N; Grewal GS; Najafi B
    Gerontology; 2017; 63(5):479-487. PubMed ID: 28285311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and characterization of a torque-controllable actuator for knee assistance during sit-to-stand.
    Shepherd MK; Rouse EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2228-2231. PubMed ID: 28324960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring.
    Massé F; Bourke AK; Chardonnens J; Paraschiv-Ionescu A; Aminian K
    Med Eng Phys; 2014 Jun; 36(6):739-44. PubMed ID: 24485500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of daily postures and walking modalities using a single chest-mounted tri-axial accelerometer.
    Nazarahari M; Rouhani H
    Med Eng Phys; 2018 Jul; 57():75-81. PubMed ID: 29691130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.
    Massé F; Gonzenbach RR; Arami A; Paraschiv-Ionescu A; Luft AR; Aminian K
    J Neuroeng Rehabil; 2015 Aug; 12():72. PubMed ID: 26303929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.