These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26737431)

  • 1. Human motion energy harvesting using a piezoelectric MFC patch.
    Bassani G; Filippeschi A; Ruffaldi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5070-3. PubMed ID: 26737431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic Energy Harvesting for Wearable Medical Sensors.
    Gljušćić P; Zelenika S; Blažević D; Kamenar E
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31726683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harvesting biomechanical energy or carrying batteries? An evaluation method based on a comparison of metabolic power.
    Schertzer E; Riemer R
    J Neuroeng Rehabil; 2015 Mar; 12():30. PubMed ID: 25879232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Self-Powered Insole for Human Motion Recognition.
    Han Y; Cao Y; Zhao J; Yin Y; Ye L; Wang X; You Z
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy harvesting for human wearable and implantable bio-sensors.
    Mitcheson PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3432-6. PubMed ID: 21097254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Ion Sweeping on Prussian Blue Analogue Nanoparticles and Activated Carbon for Electrochemical Kinetic Energy Harvesting.
    Jung ID; Kim M; Gao C; Liu Y; Park C; Lee HW; Lee SW
    Nano Lett; 2020 Mar; 20(3):1800-1807. PubMed ID: 32027804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Powering biomedical devices with body motion.
    Romero E; Warrington RO; Neuman MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3747-50. PubMed ID: 21096868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A piezoelectric energy-harvesting shoe system for podiatric sensing.
    Meier R; Kelly N; Almog O; Chiang P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():622-5. PubMed ID: 25570036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A shoe-embedded piezoelectric energy harvester for wearable sensors.
    Zhao J; You Z
    Sensors (Basel); 2014 Jul; 14(7):12497-510. PubMed ID: 25019634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a biomechanical energy harvester.
    Li Q; Naing V; Donelan JM
    J Neuroeng Rehabil; 2009 Jun; 6():22. PubMed ID: 19549313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of Generated Energy/Electrical Quantities from Locomotion Activities Using Piezoelectric Wearable Sensors for Body Motion Energy Harvesting.
    Proto A; Penhaker M; Bibbo D; Vala D; Conforto S; Schmid M
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27077867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Exoskeleton System for Energy Harvesting and Angle Sensing Based on a Piezoelectric Cantilever Generator Array.
    Hu B; Xue J; Jiang D; Tan P; Wang Y; Liu M; Yu H; Zou Y; Li Z
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36622-36632. PubMed ID: 35924818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A triboelectric motion sensor in wearable body sensor network for human activity recognition.
    Hui Huang ; Xian Li ; Ye Sun
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4889-4892. PubMed ID: 28269366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Body-Integrated Self-Powered System for Wearable and Implantable Applications.
    Shi B; Liu Z; Zheng Q; Meng J; Ouyang H; Zou Y; Jiang D; Qu X; Yu M; Zhao L; Fan Y; Wang ZL; Li Z
    ACS Nano; 2019 May; 13(5):6017-6024. PubMed ID: 31083973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Performance of Textile Triboelectric Nanogenerators with Oblique Microrod Arrays for Wearable Energy Harvesting.
    Zhang L; Su C; Cheng L; Cui N; Gu L; Qin Y; Yang R; Zhou F
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26824-26829. PubMed ID: 31271026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of shift working on the potential for self-powering via kinetic energy harvesting in wearable devices.
    Beach C; Casson AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7003-7006. PubMed ID: 34892715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piezoelectric polymer multilayer on flexible substrate for energy harvesting.
    Zhang L; Oh SR; Wong TC; Tan CY; Yao K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):2013-20. PubMed ID: 24658732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable Triboelectric Generator for Powering the Portable Electronic Devices.
    Cui N; Liu J; Gu L; Bai S; Chen X; Qin Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18225-30. PubMed ID: 25494528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a mechanism for converting the energy of knee motions by using electroactive polymers.
    Armbruster P; Oster Y; Vogt M; Pylatiuk C
    Biomed Tech (Berl); 2017 Nov; 62(6):643-652. PubMed ID: 28258972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloth-Based Power Shirt for Wearable Energy Harvesting and Clothes Ornamentation.
    Li S; Zhong Q; Zhong J; Cheng X; Wang B; Hu B; Zhou J
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14912-6. PubMed ID: 26098265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.