BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 26737443)

  • 1. A chair for cuffless real-time estimation of systolic blood pressure based on pulse transit time.
    Tang Z; Sekine M; Tamura T; Yoshida M; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5118-21. PubMed ID: 26737443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Chair-Based Unobtrusive Cuffless Blood Pressure Monitoring System Based on Pulse Arrival Time.
    Tang Z; Tamura T; Sekine M; Huang M; Chen W; Yoshida M; Sakatani K; Kobayashi H; Kanaya S
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1194-1205. PubMed ID: 28113527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of cuff-based and cuffless continuous blood pressure measurements in children and adolescents.
    Zachwieja J; Neyman-Bartkowiak A; Rabiega A; Wojciechowska M; Barabasz M; Musielak A; Silska-Dittmar M; Ostalska-Nowicka D
    Clin Exp Hypertens; 2020 Aug; 42(6):512-518. PubMed ID: 31941385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy and User Acceptability of 24-hour Ambulatory Blood Pressure Monitoring by a Prototype Cuffless Multi-Sensor Device Compared to a Conventional Oscillometric Device.
    Heimark S; Hove C; Stepanov A; Boysen ES; Gløersen Ø; Bøtke-Rasmussen KG; Gravdal HJ; Narayanapillai K; Fadl Elmula FEM; Seeberg TM; Larstorp ACK; Waldum-Grevbo B
    Blood Press; 2023 Dec; 32(1):2274595. PubMed ID: 37885101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Real-Time Cuffless Blood Pressure Measurement Systems with ECG Electrodes and a Microphone Using Pulse Transit Time (PTT).
    Choi J; Kang Y; Park J; Joung Y; Koo C
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Causal inference based cuffless blood pressure estimation: A pilot study.
    Liu L; Zhang YT; Wang W; Chen Y; Ding X
    Comput Biol Med; 2023 Jun; 159():106900. PubMed ID: 37087777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal Wrist Biosensor for Wearable Cuff-less Blood Pressure Monitoring System.
    Rachim VP; Chung WY
    Sci Rep; 2019 May; 9(1):7947. PubMed ID: 31138845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms.
    Zuhair Sameen A; Jaafar R; Zahedi E; Kok Beng G
    J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique.
    Nabeel PM; Jayaraj J; Mohanasankar S
    Physiol Meas; 2017 Nov; 38(12):2122-2140. PubMed ID: 29058686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Gholamhosseini H; Baig M; Rastegar S; Lindén M
    Stud Health Technol Inform; 2018; 249():77-83. PubMed ID: 29866960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation.
    Wan-Hua Lin ; Hui Wang ; Samuel OW; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():738-741. PubMed ID: 29059978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals.
    Sharifi I; Goudarzi S; Khodabakhshi MB
    Artif Intell Med; 2019 Jun; 97():143-151. PubMed ID: 30587391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK
    IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram.
    Lee KJ; Roh J; Cho D; Hyeong J; Kim S
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30708934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Tracking of Changes in Systolic Blood Pressure using BCG and ECG.
    He S; Dajani HR; Meade RD; Kenny GP; Bolic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6826-6829. PubMed ID: 31947408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Cuffless Blood Pressure Estimation Method Using a Bayesian Hierarchical Model.
    He S; Dajani HR; Bolic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():898-901. PubMed ID: 34891435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bi-Modal Arterial Compliance Probe for Calibration-Free Cuffless Blood Pressure Estimation.
    P M N; Joseph J; Karthik S; Sivaprakasam M; Chenniappan M
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2392-2404. PubMed ID: 30130174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG.
    Liu J; Li Y; Ding XR; Dai WX; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5973-6. PubMed ID: 26737652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.