These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26737483)

  • 1. Biometry-based concentric tubes robot for vitreoretinal surgery.
    Lin FY; Bergeles C; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5280-4. PubMed ID: 26737483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsurgical robotic system for vitreoretinal surgery.
    Ida Y; Sugita N; Ueta T; Tamaki Y; Tanimoto K; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2012 Jan; 7(1):27-34. PubMed ID: 21573828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scleral Force Evaluation During Vitreoretinal Surgery: in an In Vivo Rabbit Eye Model.
    Patel N; Urias M; Ebrahimi A; Gehlbach P; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6049-6053. PubMed ID: 33019350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of 3-DOF force sensing micro-forceps for robot assisted vitreoretinal surgery.
    Gonenc B; Handa J; Gehlbach P; Taylor RH; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5686-9. PubMed ID: 24111028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A concentric tube-based 4-DOF puncturing needle with a novel miniaturized actuation system for vitrectomy.
    Farooq MU; Xu B; Ko SY
    Biomed Eng Online; 2019 Apr; 18(1):46. PubMed ID: 30999918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Sclera Force Feedback for Enabling Safe Robot-Assisted Vitreoretinal Surgery.
    Ebrahimi A; He C; Roizenblatt M; Patel N; Sefati S; Gehlbach P; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3650-3655. PubMed ID: 30441165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Course of intraocular pressure after vitreoretinal surgery: is early postoperative intraocular pressure elevation predictable?
    Muether PS; Hoerster R; Kirchhof B; Fauser S
    Retina; 2011 Sep; 31(8):1545-52. PubMed ID: 21610561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancements of vitreoretinal surgical machines.
    Lin X; Apple D; Hu J; Tewari A
    Curr Opin Ophthalmol; 2017 May; 28(3):242-245. PubMed ID: 28257298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trocar localisation for robot-assisted vitreoretinal surgery.
    Birch J; Da Cruz L; Rhode K; Bergeles C
    Int J Comput Assist Radiol Surg; 2024 Feb; 19(2):191-198. PubMed ID: 37354219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spherical mechanism analysis of a surgical robot for minimally invasive surgery -- analytical and experimental approaches.
    Rosen J; Lum M; Trimble D; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2005; 111():422-8. PubMed ID: 15718772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative robot assistant for vitreoretinal microsurgery: development of the RVRMS and feasibility studies in an animal model.
    Chen YQ; Tao JW; Su LY; Li L; Zhao SX; Yang Y; Shen LJ
    Graefes Arch Clin Exp Ophthalmol; 2017 Jun; 255(6):1167-1171. PubMed ID: 28389702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force-based Control for Safe Robot-assisted Retinal Interventions:
    Patel N; Urias M; Ebrahimi A; Taylor RH; Gehlbach P; Iordachita I
    IEEE Trans Med Robot Bionics; 2022 Aug; 4(3):578-587. PubMed ID: 36033345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Sutureless scleral intraocular lens fixation: report of nine cases and literature review].
    Benayoun Y; Petitpas S; Turki K; Adenis JP; Robert PY
    J Fr Ophtalmol; 2013 Oct; 36(8):658-68. PubMed ID: 23891322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HANDS-FREE SCLERAL DEPRESSION DEVICES.
    Ganiban GJ; Calhoun MW
    Retina; 2015 Jul; 35(7):1484-5. PubMed ID: 26049625
    [No Abstract]   [Full Text] [Related]  

  • 15. Steerable Robot-assisted Micromanipulation in the Middle Ear: Preliminary Feasibility Evaluation.
    Yasin R; O'Connell BP; Yu H; Hunter JB; Wanna GB; Rivas A; Simaan N
    Otol Neurotol; 2017 Feb; 38(2):290-295. PubMed ID: 27861302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supplemental scleral buckling for inferior retinal detachment in silicone oil-filled eyes.
    Solaiman KA; Dabour SA
    Retina; 2014 Jun; 34(6):1076-82. PubMed ID: 24240555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery.
    Qi F; Ju F; Bai DM; Chen B
    Proc Inst Mech Eng H; 2018 Feb; 232(2):135-148. PubMed ID: 29228866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentric Tube Robot Design and Optimization Based on Task and Anatomical Constraints.
    Bergeles C; Gosline AH; Vasilyev NV; Codd PJ; Del Nido PJ; Dupont PE
    IEEE Trans Robot; 2015 Feb; 31(1):67-84. PubMed ID: 26380575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous Positioning of Eye Surgical Robot Using the Tool Shadow and Kalman Filtering.
    Tayama T; Kurose Y; Marinho MM; Koyama Y; Harada K; Omata S; Arai F; Sugimoto K; Araki F; Totsuka K; Takao M; Aihara M; Mitsuishi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1723-1726. PubMed ID: 30440727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning.
    Baykal C; Torres LG; Alterovitz R
    Rep U S; 2015 Sep; 2015():4381-4387. PubMed ID: 26951790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.