BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26737484)

  • 21. Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results.
    Su H; Hu Y; Karimi HR; Knoll A; Ferrigno G; De Momi E
    Neural Netw; 2020 Nov; 131():291-299. PubMed ID: 32841835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of a multi-arm concentric-tube robot system for transnasal surgery.
    Wang J; Yang X; Li P; Song S; Liu L; Meng MQ
    Med Biol Eng Comput; 2020 Mar; 58(3):497-508. PubMed ID: 31900817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A master manipulator with a remote-center-of-motion kinematic structure for a minimally invasive robotic surgical system.
    Lee H; Cheon B; Hwang M; Kang D; Kwon DS
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29027359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pose optimization and port placement for robot-assisted minimally invasive surgery in cholecystectomy.
    Feng M; Jin X; Tong W; Guo X; Zhao J; Fu Y
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28251840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel noncontact detection method of surgeon's operation for a master-slave endovascular surgery robot.
    Zhao Y; Xing H; Guo S; Wang Y; Cui J; Ma Y; Liu Y; Liu X; Feng J; Li Y
    Med Biol Eng Comput; 2020 Apr; 58(4):871-885. PubMed ID: 32077011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Realization of Force Detection and Feedback Control for Slave Manipulator of Master/Slave Surgical Robot.
    Shi H; Zhang B; Mei X; Song Q
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robotic system with programmable motion constraint for transurethral resection.
    Sun Z; Wang T; Lu C; Shen Y; Wang J
    Int J Comput Assist Radiol Surg; 2022 May; 17(5):895-902. PubMed ID: 35428967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-Imager Compatible, MR Safe, Remote Center of Motion Needle-Guide Robot.
    Stoianovici D; Jun C; Lim S; Li P; Petrisor D; Fricke S; Sharma K; Cleary K
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):165-177. PubMed ID: 28459678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study on real-time force feedback for a master-slave interventional surgical robotic system.
    Guo S; Wang Y; Xiao N; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):37. PubMed ID: 29654553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct manipulation of tool-like masters for controlling a master-slave surgical robotic system.
    Zhang L; Zhou N; Wang S
    Int J Med Robot; 2014 Dec; 10(4):427-37. PubMed ID: 24127347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Research of the master-slave robot surgical system with the function of force feedback.
    Shi Y; Zhou C; Xie L; Chen Y; Jiang J; Zhang Z; Deng Z
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28513095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery.
    Zhao Y; Guo S; Xiao N; Wang Y; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):33. PubMed ID: 29610988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preliminary study for motion scaling based control in minimally invasive vascular interventional robot.
    Feng ZQ; Bian GB; Xie XL; Hao JL; Gao ZJ; Hou ZG
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4898-901. PubMed ID: 26737390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Accelerated Finite-Time Convergent Neural Network for Visual Servoing of a Flexible Surgical Endoscope With Physical and RCM Constraints.
    Li W; Chiu PWY; Li Z
    IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5272-5284. PubMed ID: 32011270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compact forceps manipulator using friction wheel mechanism and gimbals mechanism for laparoscopic surgery.
    Suzuki T; Katayama Y; Kobayashi E; Sakuma I
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):81-8. PubMed ID: 16685946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. K-FLEX: A flexible robotic platform for scar-free endoscopic surgery.
    Hwang M; Kwon DS
    Int J Med Robot; 2020 Apr; 16(2):e2078. PubMed ID: 31945797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concept design of robotic modules for needlescopic surgery.
    Sen S; Harada K; Hewitt Z; Susilo E; Kobayashi E; Sakuma I
    Minim Invasive Ther Allied Technol; 2017 Aug; 26(4):232-239. PubMed ID: 28635406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the design of a macro-micro parallel manipulator for cochlear microrobot operations.
    Gezgin E; Yaşar AE; Uslu T; Koçak M; Güzin D; Özbek S; Türkmen GA; Karayaman G; Alsanğur R; Bıdıklı B; Can FC; Çetin L
    Int J Med Robot; 2024 Aug; 20(4):e2654. PubMed ID: 38941214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of a 4 DOF laparoscopic surgery robot for manipulation of large organs.
    Alamdar A; Mirbagheri A; Farahmand F; Durali M
    Stud Health Technol Inform; 2012; 173():8-12. PubMed ID: 22356948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A single port surgical robot system with novel elbow joint mechanism for high force transmission.
    Hwang M; Yang UJ; Kong D; Chung DG; Lim JG; Lee DH; Kim DH; Shin D; Jang T; Kim JW; Kwon DS
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28371219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.