BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26737530)

  • 1. Efficiency optimization of class-D biomedical inductive wireless power transfer systems by means of frequency adjustment.
    Schormans M; Valente V; Demosthenous A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5473-6. PubMed ID: 26737530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors.
    Schormans M; Valente V; Demosthenous A
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal frequency for powering millimeter-sized biomedical implants inside an inductively-powered homecage.
    Gougheri HS; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4804-4807. PubMed ID: 28269345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inductive coupling links for lowest misalignment effects in transcutaneous implanted devices.
    Abbas SM; Hannan MA; Samad SA; Hussain A
    Biomed Tech (Berl); 2014 Jun; 59(3):257-68. PubMed ID: 24445231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical Inductive Link Design for Biomedical Wireless Power Transfer: A Tutorial.
    Schormans M; Valente V; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1112-1130. PubMed ID: 30010596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.
    Jo SE; Joung S; Suh JK; Kim YJ
    Med Biol Eng Comput; 2012 Sep; 50(9):973-80. PubMed ID: 22806430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless Power Transfer Techniques for Implantable Medical Devices: A Review.
    Khan SR; Pavuluri SK; Cummins G; Desmulliez MPY
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling invariant inductive link for wireless power delivery to a retinal prosthesis.
    Ng DC; Skafidas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3250-3. PubMed ID: 24110421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum achievable efficiency in near-field coupled power-transfer systems.
    Zargham M; Gulak PG
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):228-45. PubMed ID: 23853145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.
    Hannan MA; Hussein HA; Mutashar S; Samad SA; Hussain A
    Sensors (Basel); 2014 Dec; 14(12):23843-70. PubMed ID: 25615728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.
    Vihvelin H; Leadbetter J; Bance M; Brown JA; Adamson RB
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):404-11. PubMed ID: 26054073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental Trade-Offs Between Power and Data Transfer in Inductive Links for Biomedical Implants.
    Dehghanzadeh P; Zamani H; Mandal S
    IEEE Trans Biomed Circuits Syst; 2021 Apr; 15(2):235-247. PubMed ID: 33656998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safe inductive power transmission to millimeter-sized implantable microelectronics devices.
    Ibrahim A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():817-20. PubMed ID: 26736387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks.
    Miao Z; Liu D; Gong C
    IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1160-1170. PubMed ID: 28922125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Frequency-Switching Inductive Power Transfer System for Wireless, Miniaturised and Large-Scale Neural Interfaces.
    Barbruni GL; Cordara C; Carminati M; Carrara S; Ghezzi D
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):679-690. PubMed ID: 38285578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inductive power transmission to millimeter-sized biomedical implants using printed spiral coils.
    Ibrahim A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4800-4803. PubMed ID: 28269344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Figure-of-Merit for Design and Optimization of Inductive Power Transmission Links for Millimeter-Sized Biomedical Implants.
    Ibrahim A; Kiani M
    IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1100-1111. PubMed ID: 28055825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal wireless receiver structure for omnidirectional inductive power transmission to biomedical implants.
    Gougheri HS; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1975-1978. PubMed ID: 28268716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A feed-forward controlled AC-DC boost converter for biomedical implants.
    Jiang H; Lan D; Lin D; Zhang J; Liou S; Shahnasser H; Shen M; Harrison M; Roy S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1675-8. PubMed ID: 23366230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
    Bocan KN; Sejdić E
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.