BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26737541)

  • 1. Measurement of biomechanical interactions at the stump-socket interface in lower limb prostheses.
    Noll V; Wojtusch J; Schuy J; Grimmer M; Beckerle P; Rinderknecht S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5517-20. PubMed ID: 26737541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conventional patellar-tendon-bearing (PTB) socket/stump interface dynamic pressure distributions recorded during the prosthetic stance phase of gait of a trans-tibial amputee.
    Convery P; Buis AW
    Prosthet Orthot Int; 1998 Dec; 22(3):193-8. PubMed ID: 9881607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stump-socket interface pressure as an aid to socket design in prostheses for trans-femoral amputees--a preliminary study.
    Lee VS; Solomonidis SE; Spence WD
    Proc Inst Mech Eng H; 1997; 211(2):167-80. PubMed ID: 9184457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A photoelastic clinical study of the static load distribution at the stump/socket interface of PTB sockets.
    Sewell P; Vinney J; Noroozi S; Amali R; Andrews S
    Prosthet Orthot Int; 2005 Dec; 29(3):291-302. PubMed ID: 16466158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot.
    Wolf SI; Alimusaj M; Fradet L; Siegel J; Braatz F
    Clin Biomech (Bristol, Avon); 2009 Dec; 24(10):860-5. PubMed ID: 19744755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional effects of a prosthetic torsion adapter in trans-tibial amputees during unplanned spin and step turns.
    Heitzmann DW; Pieschel K; Alimusaj M; Block J; Putz C; Wolf SI
    Prosthet Orthot Int; 2016 Oct; 40(5):558-65. PubMed ID: 26195621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suspension effect and dynamic evaluation of the total surface bearing (TSB) trans-tibial prosthesis: a comparison with the patellar tendon bearing (PTB) trans-tibial prosthesis.
    Narita H; Yokogushi K; Shii S; Kakizawa M; Nosaka T
    Prosthet Orthot Int; 1997 Dec; 21(3):175-8. PubMed ID: 9453088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering a trans-tibial prosthetic socket for the lower limb amputee.
    Laing S; Lee PV; Goh JCh
    Ann Acad Med Singap; 2011 May; 40(5):252-9. PubMed ID: 21678017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Easy Technique for Radiographic Evaluation of Stump-socket Fit in Below-knee Amputees.
    Tsur A
    Ortop Traumatol Rehabil; 2019 Feb; 21(1):57-63. PubMed ID: 31019111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of trans-tibial amputee suction and vacuum socket conditions.
    Board WJ; Street GM; Caspers C
    Prosthet Orthot Int; 2001 Dec; 25(3):202-9. PubMed ID: 11860094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of prosthesis alignment on pressure distribution at the stump/socket interface in transtibial amputees during unsupported stance and gait.
    Seelen HA; Anemaat S; Janssen HM; Deckers JH
    Clin Rehabil; 2003 Nov; 17(7):787-96. PubMed ID: 14606747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement of the tibial end in a PTB prosthesis socket: a sagittal X-ray study of the PTB prosthesis.
    Lilja M; Johansson T; Oberg T
    Prosthet Orthot Int; 1993 Apr; 17(1):21-6. PubMed ID: 8337097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a residuum/socket interface simulator for lower limb prosthetics.
    McGrath MP; Gao J; Tang J; Laszczak P; Jiang L; Bader D; Moser D; Zahedi S
    Proc Inst Mech Eng H; 2017 Mar; 231(3):235-242. PubMed ID: 28164748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of prosthetic alignment changes on socket reaction moment impulse during walking in transtibial amputees.
    Kobayashi T; Orendurff MS; Arabian AK; Rosenbaum-Chou TG; Boone DA
    J Biomech; 2014 Apr; 47(6):1315-23. PubMed ID: 24612718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Socket/stump interface dynamic pressure distributions recorded during the prosthetic stance phase of gait of a trans-tibial amputee wearing a hydrocast socket.
    Convery P; Buis AW
    Prosthet Orthot Int; 1999 Aug; 23(2):107-12. PubMed ID: 10493137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of pressure distributions between two types of sockets in a bulbous stump.
    Gholizadeh H; Abu Osman NA; Eshraghi A; Arifin N; Chung TY
    Prosthet Orthot Int; 2016 Aug; 40(4):509-16. PubMed ID: 25583929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of lower limb prosthetic socket interface based on stress and motion measurements.
    Tang J; Jiang L; McGrath M; Bader D; Laszczak P; Moser D; Zahedi S
    Proc Inst Mech Eng H; 2022 Sep; 236(9):1349-1356. PubMed ID: 35821656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical investigation of the pressure and shear stress on the trans-tibial stump with a prosthesis.
    Zhang M; Turner-Smith AR; Tanner A; Roberts VC
    Med Eng Phys; 1998 Apr; 20(3):188-98. PubMed ID: 9690489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between socket pressure and EMG of two muscles in trans-femoral stumps during gait.
    Hong JH; Mun MS
    Prosthet Orthot Int; 2005 Apr; 29(1):59-72. PubMed ID: 16180378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment.
    Fang L; Jia X; Wang R
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.