BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26737587)

  • 1. Cuffless blood pressure estimation from the carotid pulse arrival time using continuous wave radar.
    Buxi D; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5704-7. PubMed ID: 26737587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood Pressure Estimation Using Pulse Transit Time From Bioimpedance and Continuous Wave Radar.
    Buxi D; Redout JM; Yuce MR
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):917-927. PubMed ID: 27337707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique.
    Nabeel PM; Jayaraj J; Mohanasankar S
    Physiol Meas; 2017 Nov; 38(12):2122-2140. PubMed ID: 29058686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cuffless Estimation of Blood Pressure: Importance of Variability in Blood Pressure Dependence of Arterial Stiffness Across Individuals and Measurement Sites.
    Butlin M; Shirbani F; Barin E; Tan I; Spronck B; Avolio AP
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2377-2383. PubMed ID: 29993392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous cuffless and non-invasive measurement of arterial blood pressure-concepts and future perspectives.
    Pilz N; Patzak A; Bothe TL
    Blood Press; 2022 Dec; 31(1):254-269. PubMed ID: 36184775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-Modal Arterial Compliance Probe for Calibration-Free Cuffless Blood Pressure Estimation.
    P M N; Joseph J; Karthik S; Sivaprakasam M; Chenniappan M
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2392-2404. PubMed ID: 30130174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of Arterial Pulse Wave Velocity from Doppler Radar Measurements: a Feasibility Study.
    Vasireddy R; Goette J; Jacomet M; Vogt A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5460-5464. PubMed ID: 31947091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood Pressure Estimation Using On-body Continuous Wave Radar and Photoplethysmogram in Various Posture and Exercise Conditions.
    Pour Ebrahim M; Heydari F; Wu T; Walker K; Joe K; Redoute JM; Yuce MR
    Sci Rep; 2019 Nov; 9(1):16346. PubMed ID: 31705001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TRCCBP: Transformer Network for Radar-Based Contactless Continuous Blood Pressure Monitoring.
    Jiang X; Zhang J; Mu W; Wang K; Li L; Zhang L
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote Estimation of Blood Pressure Using Millimeter-Wave Frequency-Modulated Continuous-Wave Radar.
    Singh L; You S; Jeong BJ; Koo C; Kim Y
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Millimeter-Wave Device for Contactless Measurement of Arterial Pulses.
    Johnson JE; Shay O; Kim C; Liao C
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1525-1534. PubMed ID: 31634846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ballistocardiogram-Based Approach to Cuffless Blood Pressure Monitoring: Proof of Concept and Potential Challenges.
    Kim CS; Carek AM; Inan OT; Mukkamala R; Hahn JO
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2384-2391. PubMed ID: 29993523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulse pressure amplification, pressure waveform calibration and clinical applications.
    Agnoletti D; Zhang Y; Salvi P; Borghi C; Topouchian J; Safar ME; Blacher J
    Atherosclerosis; 2012 Sep; 224(1):108-12. PubMed ID: 22832004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simplified method for quantifying the subject-specific relationship between blood pressure and carotid-femoral pulse wave velocity.
    Butlin M; Hathway PJ; Kouchaki Z; Peebles K; Avolio AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5708-11. PubMed ID: 26737588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frame-rate A-mode ultrasound for calibration-free cuffless carotid pressure: feasibility study using lower body negative pressure intervention.
    Raj KV; Nabeel PM; Chandran D; Sivaprakasam M; Joseph J
    Blood Press; 2022 Dec; 31(1):19-30. PubMed ID: 35014940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brachialis Pulse Wave Measurements with Ultra-Wide Band and Continuous Wave Radar, Photoplethysmography and Ultrasonic Doppler Sensors.
    Hellbrück H; Ardelt G; Wegerich P; Gehring H
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carotid Local Pulse Wave Velocity Measurement using Dual- Element Accelerometric Patch Probe.
    Arathy R; Nabeel PM; Joseph J; Sivaprakasam M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4571-4574. PubMed ID: 30441369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time.
    Buxi D; Redouté JM; Yuce MR
    Physiol Meas; 2015 Mar; 36(3):R1-26. PubMed ID: 25694235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: the PulsePen device.
    Salvi P; Lio G; Labat C; Ricci E; Pannier B; Benetos A
    J Hypertens; 2004 Dec; 22(12):2285-93. PubMed ID: 15614022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of a Calibration-Free Method of Cuffless Blood Pressure Measurement: A Pilot Study.
    Guo CY; Chang CC; Wang KJ; Hsieh TL
    IEEE J Transl Eng Health Med; 2023; 11():318-329. PubMed ID: 38163041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.