These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26737587)

  • 41. Wearable Continuous Blood Pressure Monitoring Devices Based on Pulse Wave Transit Time and Pulse Arrival Time: A Review.
    Zhou ZB; Cui TR; Li D; Jian JM; Li Z; Ji SR; Li X; Xu JD; Liu HF; Yang Y; Ren TL
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984013
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cuffless Blood Pressure Estimation from only the Waveform of Photoplethysmography using CNN.
    Shimazaki S; Kawanaka H; Ishikawa H; Inoue K; Oguri K
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5042-5045. PubMed ID: 31946992
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An investigation of pulse transit time as a blood pressure measurement method in patients undergoing carotid artery stenting.
    Can Y; Kilic H; Akdemir R; Acar B; Edem E; Kocyigit I; Vatan MB; Aksoy M; Can N; Gunduz H
    Blood Press Monit; 2016 Jun; 21(3):168-70. PubMed ID: 26919574
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using the changes in hydrostatic pressure and pulse transit time to measure arterial blood pressure.
    Poon CC; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2336-7. PubMed ID: 18002460
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.
    Gholamhosseini H; Meintjes A; Baig M; Linden M
    Stud Health Technol Inform; 2016; 224():84-9. PubMed ID: 27225558
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel blood pressure and pulse pressure estimation based on pulse transit time and stroke volume approximation.
    Lee J; Sohn J; Park J; Yang S; Lee S; Kim HC
    Biomed Eng Online; 2018 Jun; 17(1):81. PubMed ID: 29914491
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Fast Multimodal Ectopic Beat Detection Method Applied for Blood Pressure Estimation Based on Pulse Wave Velocity Measurements in Wearable Sensors.
    Pflugradt M; Geissdoerfer K; Goernig M; Orglmeister R
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28098831
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comment on 'New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy'.
    van Helmond N; Joseph JI
    Physiol Meas; 2018 Sep; 39(9):098001. PubMed ID: 30183671
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Blood Pressure Continuous Measurement through a Wearable Device: Development and Validation of a Cuffless Method.
    De Marchi B; Frigerio M; De Nadai S; Longinotti-Buitoni G; Aliverti A
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770641
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of vascular tone and pulse wave velocity in human muscular conduit arteries: selective effects of nitric oxide donors to dilate muscular arteries relative to resistance vessels.
    Fok H; Jiang B; Clapp B; Chowienczyk P
    Hypertension; 2012 Nov; 60(5):1220-5. PubMed ID: 23045465
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK
    IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring.
    Yi Z; Liu Z; Li W; Ruan T; Chen X; Liu J; Yang B; Zhang W
    Adv Mater; 2022 Apr; 34(16):e2110291. PubMed ID: 35285098
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pulse transit time estimation of aortic pulse wave velocity and blood pressure using machine learning and simulated training data.
    Huttunen JMJ; Kärkkäinen L; Lindholm H
    PLoS Comput Biol; 2019 Aug; 15(8):e1007259. PubMed ID: 31415554
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-Invasive Device for Blood Pressure Wave Acquisition by Means of Mechanical Transducer.
    Zambrana-Vinaroz D; Vicente-Samper JM; G Juan C; Esteve-Sala V; Sabater-Navarro JM
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31590351
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measurement of pulse transit time using ultra-wideband radar.
    Cho HS; Park YJ
    Technol Health Care; 2021; 29(5):859-868. PubMed ID: 33427703
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An implantable optical blood pressure sensor based on pulse transit time.
    Fiala J; Bingger P; Ruh D; Foerster K; Heilmann C; Beyersdorf F; Zappe H; Seifert A
    Biomed Microdevices; 2013 Feb; 15(1):73-81. PubMed ID: 23053446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pulse transit time differential measurement by fiber Bragg grating pulse recorder.
    Umesh S; Padma S; Ambastha S; Kalegowda A; Asokan S
    J Biomed Opt; 2015 May; 20(5):57005. PubMed ID: 26021719
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Features of the non-contact carotid pressure waveform: Cardiac and vascular dynamics during rebreathing.
    Casaccia S; Sirevaag EJ; Richter EJ; O'Sullivan JA; Scalise L; Rohrbaugh JW
    Rev Sci Instrum; 2016 Oct; 87(10):102501. PubMed ID: 27802696
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of central aortic systolic and pulse pressure from the radial artery pressure waveform.
    Adji A; O'Rourke MF
    Blood Press Monit; 2004 Jun; 9(3):115-21. PubMed ID: 15199304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.