These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26737634)

  • 1. Toad's egg-like cultivation process for forming microcarriers from nanofibrous hydrogel.
    Higashi K; Miki N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5900-3. PubMed ID: 26737634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method for micropatterning nanofibrous hydrogel film.
    Higashi K; Miki N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():145-148. PubMed ID: 28268300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration.
    Wang W; Zhang X; Teng A; Liu A
    Int J Biol Macromol; 2017 Oct; 103():226-233. PubMed ID: 28495633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogel Fiber Cultivation Method for Forming Bacterial Cellulose Microspheres.
    Higashi K; Miki N
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterning of Structurally Anisotropic Composite Hydrogel Sheets.
    Prince E; Alizadehgiashi M; Campbell M; Khuu N; Albulescu A; De France K; Ratkov D; Li Y; Hoare T; Kumacheva E
    Biomacromolecules; 2018 Apr; 19(4):1276-1284. PubMed ID: 29505709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose hydrogel with tunable shape and mechanical properties: From rigid cylinder to soft scaffold.
    Isobe N; Komamiya T; Kimura S; Kim UJ; Wada M
    Int J Biol Macromol; 2018 Oct; 117():625-631. PubMed ID: 29778880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic glass nanofibers in future hydrogel-based scaffolds.
    Sadeghian RB; Ahadian S; Yaginuma S; Ramón-Azcón J; Liang X; Nakajima K; Shiku H; Matsue T; Nakayama KS; Khademhosseini A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5276-9. PubMed ID: 25571184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial cellulose-based materials and medical devices: current state and perspectives.
    Petersen N; Gatenholm P
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1277-86. PubMed ID: 21744133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial cellulose nanocomposites: An all-nano type of material.
    Torres FG; Arroyo JJ; Troncoso OP
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1277-1293. PubMed ID: 30813008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality.
    Campano C; Merayo N; Negro C; Blanco Á
    Int J Biol Macromol; 2018 Jul; 114():1077-1083. PubMed ID: 29605254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres.
    Shamloo A; Sarmadi M; Aghababaie Z; Vossoughi M
    Int J Pharm; 2018 Feb; 537(1-2):278-289. PubMed ID: 29288809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbially-derived nanofibrous cellulose polymer for connective tissue regeneration.
    Younesi M; Akkus A; Akkus O
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():96-102. PubMed ID: 30889771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust All-Cellulose Nanofiber Composite from Stack-Up Bacterial Cellulose Hydrogels via Self-Aggregation Forces.
    Li Z; Li X; Ren J; Wu B; Luo Q; Liu X; Pei C
    J Agric Food Chem; 2020 Mar; 68(9):2696-2701. PubMed ID: 32031789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular building unit integrated with microstrand-shaped bacterial cellulose.
    Hirayama K; Okitsu T; Teramae H; Kiriya D; Onoe H; Takeuchi S
    Biomaterials; 2013 Mar; 34(10):2421-7. PubMed ID: 23332319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial cellulose nanopaper as reinforcement for polylactide composites: renewable thermoplastic NanoPaPreg.
    Montrikittiphant T; Tang M; Lee KY; Williams CK; Bismarck A
    Macromol Rapid Commun; 2014 Oct; 35(19):1640-5. PubMed ID: 25042545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultrathin bacterial cellulose membrane with a Voronoi-net structure for low pressure and high flux microfiltration.
    Tang N; Zhang S; Si Y; Yu J; Ding B
    Nanoscale; 2019 Oct; 11(38):17851-17859. PubMed ID: 31552995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro.
    Yin N; Stilwell MD; Santos TMA; Wang H; Weibel DB
    Acta Biomater; 2015 Jan; 12():129-138. PubMed ID: 25449918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of nanofibrous gelatin/silica bioglass composite microspheres using emulsion coupled with thermally induced phase separation.
    Noh DY; An YH; Jo IH; Koh YH; Kim HE
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():678-85. PubMed ID: 26952472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel.
    Gao X; Shi Z; Lau A; Liu C; Yang G; Silberschmidt VV
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():130-6. PubMed ID: 26952406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.